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Abstract

Significance: The combination of polarized imaging with artificial intelligence (AI) technology
has provided a powerful tool for performing an objective and precise diagnosis in medicine.

Aim: An approach is proposed for the detection of hepatitis B (HB) virus using a combined
Mueller matrix imaging technique and deep learning method.

Approach: In the proposed approach, Mueller matrix imaging polarimetry is applied to obtain
4 × 4 Mueller matrix images of 138 HBsAg-containing (positive) serum samples and 136
HBsAg-free (negative) serum samples. The kernel estimation density results show that, of the
16 Mueller matrix elements, elements M22 and M33 provide the best discriminatory power
between the positive and negative samples.

Results: As a result, M22 andM33 are taken as the inputs to five different deep learning models:
Xception, VGG16, VGG19, ResNet 50, and ResNet150. It is shown that the optimal classifi-
cation accuracy (94.5%) is obtained using the VGG19 model with element M22 as the input.

Conclusions: Overall, the results confirm that the proposed hybrid Mueller matrix imaging and
AI framework provides a simple and effective approach for HB virus detection.
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1 Introduction

Hepatitis B (HB) affects millions of people around the world every year. According to the World
Health Organization (WHO), around 2 billion people have been infected with HB virus (HBV)
historically, and the annual chronic HBV infection rate and death toll around the world are ∼296
million and 820,000, respectively.1 HBV is transmitted from one person to another via the
exchange of body fluids and represents a serious health danger to both the individuals involved
and the entire local population.2 HBV comprises dual-stranded DNA and DNA polymerase
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enclosed by an exterior layer of HBsAg protein.3–5 The gold standard tests for HBV diagnosis
include polymerase chain reaction (PCR) and enzyme-linked immunoassay (ELISA). However,
PCR is time-consuming and expensive, whereas ELISA sometimes produces false positives
(FPs) and false negatives (FNs).6 Consequently, there is an urgent need for cheaper, faster, and
more reliable techniques for detecting HBV at early stage.

Mueller matrix polarimetry (MMP) provides a comprehensive and noninvasive approach for
the characterization of microstructures and biological tissues.7,8 Many studies have utilized
MMP to characterize the polarization properties of pathological tissues, such as colon cancer,9

cervical cancer,10 skin cancer,11 and liver fibrosis.12 Ghosh et al.13 proposed a method based on
Mueller matrix decomposition for separating the linear birefringence (LB), circular birefringence
(CB), linear dichroism (LD), and depolarization (Dep) properties of complex turbid media.
Ossikovski14 utilized a differential Mueller matrix formalism to extract the optical properties
of Dep anisotropic media. In general, the results obtained from these studies confirm that
MMP provides a promising approach for a wide range of biosensing and clinical diagnosis appli-
cations. Lee et al.15 showed that Mueller matrix imaging polarimetry (MMIP) is an effective
technique for performing the rapid and precise scoring of collagen in pregnancy to evaluate the
preterm birth risk. Liu et al.16 used a Mueller matrix imaging ellipsometry (MMIE) technique to
perform the rapid, nondestructive, and precise measurement of nanostructure materials. Liu
et al.17 employed MMIP to observe the phase delay change of mouse oocytes before and after
maturation, respectively. Badieyan et al.18 showed that MMIP provides a dependable and eco-
nomic approach for the detection of infectious diseases through identifying and discriminating
between different bacterial colonies. Meng et al.19 found that the performance of transmission
MMIP systems can be significantly improved through the use of spatial filtering. Angelo et al.20

utilized MMIP to examine diffuse-scattering phantoms under sinusoidal irradiance of varying
spatial frequency. The results showed that the spatial frequency generated diverse effects on the
unpolarized intensity, linear polarization, and circular polarization, respectively. Sang et al.21

combined MMIP with spatial frequency domain imaging to investigate the effects of polarization
on the scattering direction of media with near-surface material anisotropy.

Artificial intelligence (AI) is used in many application domains nowadays, including social
media, healthcare, education, finance, autonomous vehicles, and so on. One of the most impor-
tant datasets in the computer vision field is the ImageNet dataset, which contains around 15 mil-
lion manually-annotated images distributed over 22,000 different categories.22 ImageNet has
been used to train and evaluate many convolutional neural network (CNN) models in recent
years, including VGG, ResNet, and Xception. It has been shown that these models provide
an excellent image classification performance for a wide variety of input images. For example,
VGG16 achieved a 92.7% top-5 test accuracy when applied to ImageNet,23 whereas ResNet24

showed a classification error of just 3.57% and Xception achieved a top-5 accuracy of 94.5%.25

The feasibility of combining MMIP with AI technology has attracted significant attention in
recent years. Ma et al.26 combined MMIP with a hybrid 3D–2D CNN to classify cells and
showed that the integration of the two technologies resulted in a significant improvement in
the classification performance compared with that achieved using MMIP alone. Li et al.27 sim-
ilarly showed that the combined use of MMIP and a CNN provided an effective means of clas-
sifying morphologically-similar algae and cyanobacteria. Liu et al.28 classified marine
microalgae using a low-resolution MMIP technique and a CNN and showed that the classifi-
cation accuracy obtained using the whole Mueller matrix image was greater than that achieved
using theM11 image alone at each resolution level. Ma et al.29 combined Muller matrix imaging
with the transfer learning technique to achieve the automatic classification of electrospun ultra-
fine fibers with an accuracy of 96%. Zhao et al.30 used a combined MMIP and multiparameter
fusion network approach to detect giant cell tumors of bone lesions with an accuracy of 99%.

In a previous study, the present group proposed a polarization technique for characterizing
the optical properties of turbid media.31,32 Recently, the same group developed a polarization
technique for dengue virus detection33 and skin cancer detection using deep learning techniques
based on polarization properties.34,35 In this study, a combination of MMIP and AI classification
framework was utilized to perform HBV detection in human blood serum samples in the reflec-
tance configuration. The MMIP technique was first employed to extract 4 × 4 Mueller matrix
images of 274 blood serum samples, comprising 138 HBsAg-containing (positive) samples and
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136 HBsAg-free (negative) samples, respectively. Then, the differential Mueller matrix formal-
ism was used to extract anisotropic parameters of the serum sample, namely the orientation angle
of LB (α), the phase retardation (β), the optical rotation angle (γ), the orientation angle of LD
(θd), the LD (D), the circular dichroism (R), and the Dep index (Δ) and to determine the suitable
parameters for distinguishing positive and negative samples. Second, the images of Mueller
matrix elements having the greatest discriminatory power between the positive and negative
samples (as identified from an inspection of the kernel estimation distribution results) were then
taken as the inputs to five different deep learning models, namely Xception, VGG16, VGG19,
ResNet 50, and ResNet150. It is noted that the proposed approach in this study based on polar-
imetry imaging in reflectance configuration provides more versatile information than that based
on an absolute value from one single point of the previous studies.34,35 Furthermore, it is more
useful for the development of classification algorithms and noninvasive techniques for biosens-
ing applications.

2 Differential Mueller Matrix Formalism and Deep Learning Model

2.1 Mueller Matrix Formalism

The Mueller matrix of a biological sample has the form36

EQ-TARGET;temp:intralink-;e001;116;501M¼

2
664
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

3
775

¼

2
664
HHþHVþVHþVV HHþHV−VH−VV PHþPV−MH−MV RHþRV−LH−LV

HH−HVþVH−VV HH−HV−VHþVV PH−PV−MHþMV RH−RV−LHþLV

HP−HMþVP−VM HP−HM−VPþVM PP−PM−MPþMM RP−RM−LPþLM

HR−HLþVR−VL HR−HL−VRþVL PR−PL−MRþML RR−RL−LRþLL

3
775;
(1)

where H, V, P, M, R, and L denote 0 deg, 90 deg, 45 deg, 135 deg, circular right-hand, and
circular left-hand polarization states, respectively, and each two-letter combination indicates the
experimental settings required to obtain the corresponding Mueller matrix element. For instance,
the state (HV) indicates the use of linear and horizontal polarization light, respectively. Thus, to
obtain Mueller matrix element M13, e.g., four measurements are required, namely (PH), (PV),
(MH), and (MV). A detailed inspection of Eq. (1) reveals that a total of 36 measurements are
needed to construct the full Mueller matrix.

The differential Mueller matrix for extracting optical properties of anisotropic samples was
developed and described in detail in Ref. 37. This method is a further extension of the conven-
tional differential Mueller matrix introduced first by Azzam.38 Briefly, the differential Mueller
matrix of a biological sample with light propagating along the z-axis of a right-handed Cartesian
coordinate system is written as38

EQ-TARGET;temp:intralink-;e002;116;222m ¼ ðdM∕dzÞM−1 ¼ VM

�
lnðλMÞ

z

�
V−1
M ¼

2
664
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

3
775; (2)

where VM; λM are the eigenvector and eigenvalue, respectively, of the Mueller matrix, M. As
discussed in Ref. 37, the anisotropic parameters of a biological sample include the orientation
angle of LB α, the phase retardation β, the optical rotation angle γ, the orientation angle of LD θd,
the LD D, the circular dichroism R, and the Dep index Δ. These parameters are expressed in
terms of the elements of the differential Mueller matrix as follows:
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EQ-TARGET;temp:intralink-;e003;116;735α ¼ 1

2
tan−1

�
m42 −m24

m34 −m43

�
; (3)

EQ-TARGET;temp:intralink-;e004;116;688β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðm42 −m24Þ

2

�
2

þ
�ðm34 −m43Þ

2

�
2

s
; (4)

EQ-TARGET;temp:intralink-;e005;116;645γ ¼ ðm23 −m32Þ
4

; (5)

EQ-TARGET;temp:intralink-;e006;116;612θd ¼
1

2
tan−1

�
m13 þm31

m12 þm21

�
; (6)

EQ-TARGET;temp:intralink-;e007;116;576D ¼ 1 − e−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm12þm21Þ2þðm13þm31Þ2

p

1þ e−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm12þm21Þ2þðm13þm31Þ2

p ; (7)

EQ-TARGET;temp:intralink-;e008;116;535R ¼ e

�
m14þm41

2

�
− 1

e

�
m14þm41

2

�
þ 1

; (8)

EQ-TARGET;temp:intralink-;e009;116;479Δ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

22 þ K2
33 þ K2

44

3

r
; 0 ≤ Δ ≤ 1; (9)

where K22 ¼ m22 −m11 and K33 ¼ m33 −m11 are the degrees of linear Dep, and K44 ¼ m44 −
m11 is the degree of circular Dep. Then, the seven anisotropic parameters that are extracted from
Eqs. (3)–(9) are used as the comparison in terms of their discriminatory powers between positive
and negative HBV samples.

2.2 Deep Learning Model

In the present study, the positive and negative HBV samples were classified using five deep
learning models based on the MMIP-derived Mueller matrix elements (see Sec. 4.2).
Figure 1 shows the basic architecture of the deep learning models implemented in the present
study. (Note that the models were all implemented on Google Colab Pro with a Tesla
P100 GPU.)

For each model, 274 samples were taken as the input to the learning algorithm, with 219
samples used for training and validation purposes (i.e., 80% of the dataset) and 55 images
retained for testing (i.e., 20% of the dataset). It is noted that, for the training set of MMIP images,
a fivefold cross-validation technique was applied, and for solving the problem of insufficient
training data, a transfer learning technique was applied in this study.39 Furthermore, the aug-
mentation technique was applied to increase the diversification of the dataset during the training
process. As shown in Fig. 1, two model variants were considered in each case: a base model and
an extended model. In the base model, all of the layers were frozen, i.e., the weights pretrained
on ImageNet were not modified but were used to classify the input MMIM images directly. By
contrast, in the extended model, the layers were unfrozen and were thus updated during the
training process in accordance with the loss function. It is noted that the dense layers were added
to slowly reduce the output of the last layer of models from 1000 classes to [256, 128, 64, 32, 16]
(i.e., intermediate layers) and finally to two classes. Moreover, dropout and batch normalization
layers were put together with fully-connected layers (i.e., dense layers) in the model architecture
to reduce overfitting. For both model variants, the binary cross entropy loss was employed, with
an initial learning rate of 0.0001, the Adam optimizer, and a batch size of 32. Moreover, the
classification performance was evaluated using four metrics, namely,

EQ-TARGET;temp:intralink-;e010;116;105Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; (10)
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EQ-TARGET;temp:intralink-;e011;116;463Precision ¼ TP

TPþ FP
; (11)

EQ-TARGET;temp:intralink-;e012;116;430Recall ¼ TP

TPþ FN
; (12)

EQ-TARGET;temp:intralink-;e013;116;397F1 score ¼ 2 ×
Precision × Recall

Precisionþ Recall
; (13)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative,
respectively.

Machine learning algorithms are highly susceptible to the range and distribution of the attrib-
ute values. In particular, data outliers can harm and delude the training process, resulting in
prolonged training intervals and, ultimately, a poorer result. Thus, detecting and removing out-
liers in the input data is of crucial importance in improving the classification performance of the
algorithm.40 One of the most commonly used methods for identifying outliers is the Tukey test,41

in which the outliers are defined based on the quartiles of the data, where the first quartile Q1 is
the value larger than a quarter of the data, the second quartile Q2 (the median) is the value larger
than half of the data, and the third quartile Q3 is the value larger than three-quarters of the data.
The interquartile range is defined as IQR ¼ Q3 −Q1, and the outliers are then defined in accor-
dance with Tukey’s rule as

EQ-TARGET;temp:intralink-;e014;116;232

	
Outliers < Q1 − 1.5 × IQR

Q3 þ 1.5 × IQR < Outliers
; (14)

where IQR stands for the interquartile range (Q3 −Q1).

3 Sample Preparation and Experimental Setup

3.1 Sample Preparation

A total of 274 human serum samples were obtained from the General Central Hospital of Tien
Giang Province in Vietnam between May and June 2020 [see Fig. 2(a)]. According to clinical
assays, 138 of the samples were positive for HBsAg (an antigen for HBV), and 136 samples were
negative. The samples were placed in serum separator tubes spray-coated with silica to assist in

Fig. 1 Schematic of deep learning model architecture.
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clotting and a polymer gel for separating the serum. The tubes were stored vertically for 20 to
30 min to form blood clots and were then centrifuged at 4000 to 5000 rpm for 10 min to separate
the serum layer [see Fig. 2(b)]. The serum was extracted by a sterile plastic pipette and placed in
1.5 mL Eppendorf tubes [see Fig. 2(c)]. Finally, the tubes were stored in 100-position cryo-boxes
at −20°C until required for use. The entire process was performed under the approval of the
Ethics Institute of the hospital involved.

Prior to the MMIP tests, two cuvettes were prepared: one for the positive samples and one for
the negative samples. The cuvettes were soaked in medical alcohol at a temperature of 70°C for
15 min, rinsed with distilled water, and then left to dry. A clean micropipette was used to transfer
the sample (positive or negative) from the Eppendorf tube to the cuvette. Finally, the cuvette was
sealed and placed in the holder of the MMIP measurement system to evaluate its Dep properties.

3.2 Experimental Setup

Figure 3 presents a schematic illustration of the experimental setup. As shown, the system con-
sists mainly of a He–Ne laser as the light source (Thorlabs Inc. HRS015B, 633 nm), a polarizer
(P0, Thorlabs Inc. LPVIS100-MP), a polarization state generator (PSG), a polarization state
analyzer (PSA), a zoom lens (Thorlabs Inc. MVL6X12Z), a charge-coupled device (CCD) cam-
era, and a computer. It is also noted that a coherent light source was used for the sake of sim-
plicity and stability. The PSG creates polarized light from the unfiltered laser source, while the
PSA analyzes the polarization state of the light beam scattered from the sample. The PSG com-
prises a quarter waveplate (QW1, Thorlabs Inc. WPQ05M-633) to generate circular polarization
light, a linear polarizer (P1, Thorlabs Inc. LPVIS100-MP) to produce linear polarization light,
and two condenser lenses (L1, L2, Thorlabs Inc. LSSB04-A) to focus the light onto the sample.

Fig. 2 Blood sample: (a) before and (b) after centrifuging. (c) Final hepatitis serum.

Fig. 3 (a) Schematic of experimental MMIM setup and (b) calibration result of measured Mueller
matrix of a standard mirror.
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Meanwhile, the PSA consists of a quarter waveplate (QW2, Thorlabs Inc. WPQ05M-633) and a
linear polarizer (P2, Thorlabs Inc. LPVIS100-MP). In performing the measurement process, the
incident angle was set to 60 deg to prevent the reflection of the incident light from the sample
surface and to obtain a good polarization image.33,42 Moreover, the polarizers (P1, P2) and quar-
ter waveplates (QW1, QW2) in the PSG and PSA were mounted on rotators (Sigma Koki Co.,
SGSP-60YAW-0B) to generate the 36 polarization states required to construct the Mueller matrix
of each sample. In the PSG, the linear polarization states (0 deg, 45 deg, 90 deg, and 135 deg)
were generated simply by rotating the polarizer (P1). The circular polarization lights (right and
left) were produced by moving P1 out of the laser path with a slider and rotating the QW1 to the
right- and left-hand circular polarization states. Similarly, in the PSA, the linear states of polari-
zation were produced by rotating polarizer P2 and moving QW2 out of the laser path with a
slider, whereas the circular polarization lights were generated by rotating QW2 and moving P2
out of the laser path with a slider. The principal axis angle of optical elements in the measurement
system and the degree of Dep were calibrated and controlled by a commercial Stokes polarimeter
(Thorlabs Inc., PAX5710). A similar calibration process was described in detail in Refs. 31 and
32. The degree of polarization of the output light is measured by commercial Stokes polarimeter
and is approximately 99.99%. The calibration result of the measured Mueller matrix of a stan-
dard mirror (Thorlabs Inc., BB1-E02) with an accuracy of 10−2 is shown in Fig. 3(b). It is noted
that the measurement system was first developed by the Hui Ma group7,8,43 for characterizing the
microstructure of biological tissue. Furthermore, the system was also employed by the present
group for dengue detection.33 Thus, the feasibility of the measurement for extracting the Mueller
matrix of anisotropic turbid media is confirmed. When performing the experiments, HBV sam-
ples were stored in a 1.3 mm-thickness quartz cuvette (Thorlabs Inc., CV10Q35F). It is noted
that both the incident photon beam and the remission photon beam went through the isotropic
cuvette sample holder. Subsequently, blood plasma is an anisotropic scattering medium but is
contained in an isotropic cylinder. Therefore, the Muller matrix strongly depends on the angle at
which the detector is set relative to the cuvette. The phenomenon of using an isotropic cuvette for
anisotropic samples is common and well known. The simple way to eliminate the effect of the
cuvette material is by dividing the measured results by the results obtained by the cuvette itself.
In the current setup, the Mueller matrix is measured with 36 images. It is noted that the Mueller
matrix is able to be constructed with 16 images but requires a more complicated system.44

4 Results and Discussion

4.1 Anisotropic Properties of Serum Samples

Figure 4 shows the results of HBV images before and after dropping, respectively. The original
image captured from a CCD camera has the size of 1280 × 1024 pixels. For the dropping step,

Fig. 4 HBV images (a) before and (b) after dropping.
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an average kernel was created as large as the sample (800 × 800). It is noted that the size of the
kernel was chosen after numerous trial and error efforts. The kernel swept across every pixel of
each image. After that, the largest average intensity value was chosen, which is normally the
center pixel of the image. From the center pixel, the image spread to the size of 900 × 900 (i.e.,
450 pixels in each direction). As a result, a “for” loop was used to automatically crop 274 sam-
ples (with 36 images for each sample) and save new images in PNG format.

Table 1 and Fig. 5 show the values and seaborn boxplots of the anisotropic parameters of the
negative and positive samples. As shown, the values of Δ provide a good discriminatory power
between two samples because of the scattering properties of blood plasma. The values of Δ have
a value overlap only in the range of 0.32 to 0.42, and the outliers of the positive class are much
lower than those of the negative class. The value β also provides a reliable indication of the
sample class because of the photoelasticity properties of possible fiber structure within blood
plasma. The ranges of the two classes have a minor overlap (between 0.51 and 0.55), and the
outliers of the positive class have a higher value than those of the negative class. Parameters D
and R can also be used to discriminate between the samples possibly containing the protein
structure of antibodies (IgG or IgM) within the samples generating the dichroism properties.
The values of D and R have overlaps between the two classes (i.e., from 0.86 to 0.876 and
−0.059 to −0.054, respectively). In contrast, the value range of γ, α, and θd cannot be used
to reliably distinguish between the two samples. γ is a well-known parameter used for diabetes
measurement, and α and θd are parameters for collagen and tumor structure, respectively. As
shown, the outlier values of γ also fall within a similar range for both samples. The value ranges
of α and θd are almost the same for both classes.

4.2 Application of Deep Learning Models to HBV Detection

Figures 6(a) and 6(b) present illustrative 4 × 4 Mueller matrix images of the negative and pos-
itive HbsAg samples, respectively. Figure 7 presents the corresponding kernel density estimation
results. The images presented in Fig. 6 confirm that qualitative differences exist between the

Table 1 Anisotropic parameters of negative and positive serum samples.

Sample

Parameters

γ Δ α β θ D R

Negative Mean 0.106 0.440 −0.015 0.509 0.099 0.836 −0.053

Std 0.525 0.240 0.005 0.110 0.015 0.061 0.009

Min −3.054 −0.156 −0.030 0.350 0.048 0.679 −0.073

Max 2.412 0.892 −0.002 0.870 0.150 0.977 −0.021

Q1 −0.118 0.319 −0.018 0.428 0.091 0.790 −0.060

Q3 0.243 0.492 −0.011 0.558 0.109 0.877 −0.048

IQR 0.361 0.173 0.007 0.130 0.018 0.086 0.011

Positive Mean 0.317 0.230 −0.013 0.700 0.103 0.905 −0.056

Std 0.765 0.431 0.006 0.300 0.014 0.060 0.014

Min −1.856 −2.016 −0.032 0.372 0.069 0.763 −0.098

Max 3.318 0.892 −0.0001 2.335 0.143 1.000 −0.011

Q1 −0.161 0.091 −0.017 0.513 0.093 0.860 −0.065

Q3 0.623 0.423 −0.009 0.776 0.112 0.958 −0.054

IQR 0.784 0.332 0.008 0.263 0.019 0.098 0.011
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Mueller matrix element images of the two classes. A close inspection of Fig. 7 reveals that ele-
ments M22 and M33 show the greatest difference between the two classes and hence provide the
most reliable elements for differentiating between them. It is noted that these results show a good
quantitative agreement with those obtained from Ref. 33 and are consistent with the results
reported in Ref. 45. Accordingly, two datasets consisting of M22 and M33 images, respectively,
were prepared and supplied as inputs to five different deep learning models (Xception, VGG16,
VGG19, ResNet50, and ResNet150).

Fig. 6 4 × 4 Mueller matrix images in BGR color format: (a) negative sample and (b) positive
sample.

Fig. 5 Seaborn boxplot of anisotropic parameters of serum samples: (a) negative sample and
(b) positive sample.
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Table 2 shows the number of positive and negative HbsAg samples used for training and
testing. From 138 of the positive and 136 negative samples, 219 samples (i.e., 108 positive sam-
ples and 111 negative samples) were used for training with a fivefold cross-validation technique,
and 55 samples (i.e., 30 positive samples and 25 negative samples) were used for testing.

4.3 Base Model Results

Figure 8 shows the performance metrics of the five base models when applied to the test dataset
using matrix elements (a) M22 and (b) M33 as the input for classification purposes. Obviously,
as shown in Fig. 8, the abilities of detection among the five models have significant differences.

Table 2 Number of positive and negative HbsAg samples in training
and testing datasets.

Positive Negative

Number of training samples 108 111

Number of testing samples 30 25

Fig. 7 Kernel density estimations of positive and negative samples.
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It is seen that the Xception, ResNet50, and ResNet150 models all have accuracies of >80%. By
contrast, the two VGG models have an accuracy of just 54.5%. Moreover, both models have a
recall score of 100%, which indicates that they consider all of the healthy samples to be HBV
samples.

Of all models, the Xception model provides the most stable performance across the
five performance metrics and achieves the highest accuracy of 90.9% and 87.3% for matrix
elements M22 and M33, respectively. Referring to the confusion matrixes in Fig. 9, it is seen
that matrix element M22 results in five incorrect detection cases (i.e., three FN and two FP),
whereas matrix element M33 results in six incorrect detection cases (i.e., one FN and five
FP). However, matrix element M33 results in only one positive sample being incorrectly clas-
sified as a negative (i.e., normal) sample. It is noted that, in a medical procedure of diagnosis, a
highly sensitive test is when there are few FN results; in other words, few actual cases are
missed.46 Therefore, usually, the prediction model with a low false negative rate will be selected.

As described in Sec. 2, the base models were extended through the addition of a dropout layer,
a batch normalization layer, and fully-connected layers. Keras callbacks (ModelCheckpoint,
EarlyStopping, and GridsearchCV) were additionally used to optimize the training procedure.
These callbacks are used to test different fully connected layer configurations with output features
of [256, 128, 64, 32, 16], L2 regularization, and kernel constraint automatically. Figure 10 shows
the performance metrics of the extended models with the best output features of 32 for a fully

Fig. 9 Confusion matrixes for base the Xception model using (a) M22 and (b) M33 as inputs.

Fig. 8 Performance metrics of five base models when applied to the testing dataset.
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connected layer when using matrix elements (a)M22 and (b)M33 as the basis for the classification
process.

The Xception, VGG16, and VGG19 models all achieve an F1 score of>90% for both matrix
elements. For the case in which M22 is taken as the basis for the classification process, the
VGG19 model achieves the highest accuracy (94.5%) and F1 score (94.7%), whereas the
Xception model yields the lowest accuracy (90.9%) and F1 score (91.5%). By contrast, when
using element M33 as the input, the Xception model achieves the highest F1 score (91.8%),
whereas the VGG19 model achieves the lowest score (90.0%).

The ResNet models achieve a lower classification performance than the VGG and Xception
models. However, the ResNet150 and ResNet50 models nevertheless achieve precision scores of
87.5% and 92%, respectively, when taking matrix element M22 as the input to the classification
process. It is noted that, in this study when using elements M22 and M33 as the inputs, the per-
formance of base ResNet models achieves better results than the extended ones. This can be
explained by the addition of some layers to reduce output features slowly did not guarantee
an improvement in the performance of the pretrained models.

Figure 11 shows the confusion matrix of the extended VGG19 model when using matrix
element M22 as the input. As shown, all 25 negative samples are correctly classified, giving
a precision score of 100% (see Fig. 10). However, 3 of the 30 positive samples are not recog-
nized, leading to a recall score of 90%.

Fig. 11 Confusion matrix of extended the VGG19 model using M22 as input.

Fig. 10 Performance metrics of the five extended models when applied to the testing dataset.
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Figure 12 shows the confusion matrix of the extended Xception model when using matrix
elementM33 as the input. It is seen that just three negative samples and two positive samples are
misclassified. Thus, the precision and recall scores are equal to 90.3% and 93.3%, respectively,
and the overall accuracy is 90.9%.

5 Conclusion

This study has proposed a combined MMIM and machine learning framework for performing
the detection of HBV based on the polarization properties of blood serum samples. The results
have shown that, among all of the optical anisotropic parameters of HBV serum samples, param-
eters Δ, β,D, and R provide the optimal discriminatory power between the negative and positive
classes. Furthermore, five deep learning models have been considered: Xception, VGG16,
VGG19, ResNet 50, and ResNet150. For each model, two variants have been implemented,
namely a base model with fixed weights based on a pretrained ImageNet model and an extended
model in which the weights are adjusted adaptively over the course of the training process. The
results have shown that elements M22 and M33 of the Mueller matrix provide the maximum
discriminatory power between the negative and positive samples. Moreover, among the five base
models, the Xception model achieved the highest accuracy of 90.9% and 87.3% when using
matrix elements M22 and M33 for classification purposes, respectively. By contrast, for the
extended models, the optimal accuracy (94.5%) was obtained using the VGG19 model with
elementM22 as the input. Overall, the results indicate that the framework proposed in this study
provides a reliable and straightforward approach for detecting HBV.
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