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Abstract. Respiratory motion is a significant obstacle to the use of quantitative perfusion in clinical practice.
Increasingly complex motion correction algorithms are being developed to correct for respiratory motion.
However, the impact of these improvements on the final diagnosis of ischemic heart disease has not been evalu-
ated. The aim of this study was to compare the performance of four automated correction methods in terms of
their impact on diagnostic accuracy. Three strategies for motion correction were used: (1) independent trans-
lation correction for all slices, (2) translation correction for the basal slice with transform propagation to the
remaining two slices assuming identical motion in the remaining slices, and (3) rigid correction (translation
and rotation) for the basal slice. There were no significant differences in diagnostic accuracy between the manual
and automatic motion-corrected datasets (p = 0.88). The area under the curve values for manual motion cor-
rection and automatic motion correction were 0.93 and 0.92, respectively. All of the automated motion correction
methods achieved a comparable diagnostic accuracy to manual correction. This suggests that the simplest
automated motion correction method (method 2 with translation transform for basal location and transform
propagation to the remaining slices) is a sufficiently complex motion correction method for use in quantitative
myocardial perfusion. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.3.2.024002]
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1 Introduction The work of McLeish et al.® reports that the magnitude of the
respiration-induced through-plane motion of the heart is largest
in the cranio-caudal direction with smaller displacements in the
left-right and anterior—posterior directions; the authors report
respiration-induced through-plane translation of up to 23 mm
combined with rotation and nonrigid deformation. In the
work of Milles et al.,’ it is pointed out that through-plane motion
violates the underlying principle of perfusion imaging, which
relies on the idea of tracking the concentration of the contrast
agent for the same location in the myocardium over time. In
the literature on perfusion series registration, the respiration-
induced motion is often mistaken for in-plane two-dimensional
(2-D) motion because the shape of the myocardium does not
vary significantly around the medial slice, which may create
an impression of the respiration motion occurring only in 2-D
without through-plane motion. In practice, small magnitudes of
through-plane motion can be ignored, which cannot be said
about severe cases of through-plane motion. The problem of
through-plane motion cannot be solved perfectly with postac-
quisition methods only, and it has the potential of reducing
the sensitivity of perfusion analysis. All postacquisition solu-
tions for automated motion correction in perfusion series aim
to offer a sensible compromise to achieve the best estimate
for the perfusion-related parameters. Various registration meth-
ods based on free-form deformations and collectively known as
*Address all correspondence to: Constantine Zakkaroff, E-mail: c.zakkaroff@ nonrigid or deformable methods have been reported in the lit-
leeds.ac.uk erature over the past years. However, keeping the problem of

Magnetic resonance imaging (MRI) dynamic contrast enhanced
(DCE) myocardial perfusion data have been shown to have
a high sensitivity and specificity for diagnosing myocardial
ischemia.'> DCE-MRI perfusion datasets can be analyzed to
provide quantitative myocardial perfusion estimates, which
have also been shown to perform well diagnostically.®*
Quantitation of myocardial perfusion requires regions of interest
(ROIs) to be drawn over the myocardium and blood pool in
every frame in the DCE-MRI dataset to obtain signal enhance-
ment versus time curves. However, in the presence of myocar-
dial displacement due to respiration, this task is prohibitively
time consuming for clinical use. The main challenge of manual
motion correction is the respiratory motion, causing the imaging
plane to pass through an entirely different location (above or
below the intended slice location), which breaks the underlying
assumption of perfusion analysis. Motion correction methods
attempt to remove the respiratory motion from the dataset so
that ROIs are required on a single frame only. However, auto-
mated motion correction is challenging in DCE-MRI due to
poor signal-to-noise ratio in the images, the temporally changing
image contrast, and through-plane motion.
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through-plane motion in mind, it can be concluded that deform-
able motion correction is unlikely to improve the diagnostic
accuracy of perfusion analysis because it solves an incorrectly
posed registration problem. For these reasons, pragmatic simpli-
fications may produce more useful motion correction solutions
than complex deformable approaches.

Typically, the accuracy of motion correction algorithms is
assessed on the basis of geometric metrics such as the Dice sim-
ilarity coefficient’® and Hausdorff distance.’ The Hausdorff dis-
tance measures the distance between two subsets of a metric
space; Hausdorff distance between two sets is small if every
point of either set is close to some point of the other set. In
the context of image analysis, the Hausdorff distance metric
is used for determining the degree of similarity between two
objects when they are superimposed on one another. These
evaluation methods require ground-truth motion correction
parameters obtained manually against which to compare the
automated results. Inevitably, manual definition of ground-
truth motion correction is subject to human operator error,
and in some cases may be less accurate than automated motion
correction. Although automated perfusion motion correction
techniques offer tangible benefits, the effects of automated sol-
utions on the clinical outcome measures are rarely assessed.

The work presented here was a retrospective substudy using
data from the CE-MARC trial.' The CE-MARC trial evaluated
the performance of a multiparametric cardiac MR protocol for
diagnosing significant coronary artery disease and compared
this to single photon-computed emission computed tomography
(SPECT) using the reference standard of invasive x-ray angiog-
raphy. The dataset allowed an evaluation of quantitative MR
perfusion estimates diagnostically. The CE-MARC trial' dataset
provides an ideal opportunity to test motion correction for
quantitative perfusion in terms of the diagnosis of myocardial
ischemia, which is ultimately the purpose of motion correction
in cardiac perfusion DCE-MRI. The aim of our study was to use
the clinical gold standard, provided by CE-MARGC, to evaluate
diagnostically and compare the outcomes of four strategies
for motion correction of varying complexity. The strategies
included combinations of translation, rotation, and deformable
registration approaches as described in the Sec. 2. Our hypoth-
eses were first, that motion correction of the basal slice, with
transform propagation to the other slices, provides results
that are at least as good as independent motion corrections
for each slice; and second, that image translation alone is
sufficient to account for respiratory motion for the purposes
of quantitative perfusion. We would like to point out that the
comparison of registration strategies was made on the basis
of their impact on the diagnostic accuracy. Evaluation in
terms of diagnostic accuracy provides evidence based on
which pragmatic decisions can be made about the necessary
complexity and accuracy of motion correction for cardiac per-
fusion DCE-MRI datasets.

2 Methods

Three short axis slices (basal, medial, and apical) were acquired
during the first pass of the contrast agent through the myocardium.
The correspondence of the cardiac phase within each spatial loca-
tion was achieved through electrocardiogram (ECG) gating.
Adenosine-induced stress imaging was performed 15 min before
rest imaging. Myocardial perfusion MR imaging was performed
using bolus intravenous injection of 0.05 mmol/kg of body
weight gadopentetate dimeglumine (Magnevist; Schering, West
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Sussex, England). Images were acquired using a T1-weighted
saturation recovery turbo field-echo imaging sequence. A shared
(nonslice-selective) saturation pulse was used, giving prepulse
delay times of 126 ms, 272 ms, and 418 ms for the basal, middle,
and apical slices, respectively. The pulse sequence parameters
were as follows: repetition time/echo time, 2.7/1.0 ms; flip
angle, 15 deg; sensitivity encoding factor, 2; matrix, 144 3 144;
field of view, 320 to 460 mm; slice thickness, 10 mm; and partial
Fourier factor, 0.67.

The independent Clinical Trials Unit at the University of
Leeds selected 50 patients as a subset of the CE-MARC trial pop-
ulation representative for risk factors and disease severity. All
CE-MARC patients underwent x-ray angiography, SPECT, and
a multiparametric MR examination. In order to have a consistent
dataset, patients with any x-ray angiography defined stenosis
severity between 50% and 70% or whose SPECT and x-ray angi-
ography results were discordant were excluded from the study.
Patients were recruited from Leeds Teaching Hospitals NHS
Trust, Leeds, United Kingdom, and Pinderfields Hospital,
Wakefield, United Kingdom. All SPECT and CMR scans were
undertaken at Leeds General Infirmary. The study was performed
in accordance with the Declaration of Helsinki (October 2000),
with all patients providing informed written consent. The study
protocol and other relevant documentation were approved by the
Leeds (West) Research Ethics Committee.

2.1 Registration Strategies Overview

The registration methods for motion correction in perfusion
series compared here draw on the basic frame-by-frame regis-
tration approach reported by Li and Sun.'” In this approach, the
motion correction process is started with the first two frames,
labeled as fixed and moving images accordingly. For each con-
secutive registration step, the moving image from the previous
step is resampled and treated as the new fixed image. The key
novelty of the solution presented here is in the use of average
frames as fixed images during registration to avoid the issue of
the accumulated registration error, which is common for frame-
by-frame registration methods. As noted earlier, with these
methods, for each pair of adjacent images, the moving (cor-
rected) image becomes the reference image for the next regis-
tration step. Under this scheme, individual registration errors in
early frames tend to be exacerbated for the later frames in the
series. Use of average images draws on the ideas of groupwise
registration published by Cootes et al.'! The rationale behind the
use of average images is that they contain all features from the
series, which makes them suitable to be used as the fixed images
for the correction of slices from precontrast, right-ventricular
contrast, left-ventricular contrast, and contrast wash-out phases
of the series. Average images are used as the fixed images in the
rigid and deformable versions of motion correction methods. An
example of average images and their progressive refinement is
given in Fig. 1.

Motion correction was performed on the 50 rest and 50 stress
perfusion datasets in accordance with four registration strate-
gies. These strategies vary among themselves in the following
aspects:

1. Complexity of the geometric transform: translation-
based, rigid, and deformable transforms were used in
the experiments. It iS common in image registration
practice to start motion correction with the simplest pos-
sible transform to compensate for gross displacement:
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Fig. 1 Examples of average images. Evolution of average images for
a stress perfusion series; rows: apical, medial, and basal locations;
columns: prior to correction, after translation, and after rigid correc-
tion; the improvement of the clarity of the cardiac features from non-
corrected average images to translation-corrected images supports
the general observation that the bulk of the motion is compensated
by translation correction; the rigidly corrected average images also
usually show improvement in clarity that may vary from patient to
patient.

translation transform. If further correction is required to
account for the rotational motion component, the output
of the translation correction method is used to initialize
the rigid (combination of translational and rotational
displacements) correction method. Similarly, the
deformable motion correction method needs to be ini-
tialized with gross motion correction obtained either
with translation or rigid transform. Complex registra-
tion solutions in practice form registration pipelines,
where motion correction results for distinct stages of
the pipeline are used to initialize subsequent motion
correction stages. Depending on the nature of the
experiments, the results from distinct stages of motion
correction can be treated as independent results for dis-
tinct types of registration strategies: translation, rigid,
and deformable. This was the case with the experiments
described here.

2. Choice between the two options of dealing with
motion in different slices: one option involves inde-
pendent motion correction in all slices, basal, medial,
and apical, while the other option involves motion cor-
rection in the basal slice with transform propagation to
the medial and apical slices. It is hypothesized here
that it is sufficient to correct the motion only for
the basal slice in the whole series, and propagate
the transforms to the medial and apical slices. This
hypothesis is based on the following observations:

a. Basal slices contain the greatest information density,
while the clarity and scale of image features usually
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progressively decrease from basal to apical slices
with the decreasing size of the ROIs. Transform
optimization based on any given image similarity
metric provides better results for larger objects
even with significant initial displacements because
the image similarity metric produces stronger
gradients for larger features. Thus it is likely that
motion correction of basal slices will provide the
most accurate results.

b. The perfusion imaging protocol ensures that all
three slices in each dynamic frame, basal, medial,
and apical, are acquired within 150 ms of each
other in the same cardiac cycle. Since respiratory
motion is relatively slow, the difference of respira-
tory motion for the three slices in each frame can be
considered negligible. The contractile myocardial
motion is much faster than respiratory motion,
but with ECG gating functioning correctly, the
phase remains consistent for all slices for a given
location. This ensures the consistency of spatial
position and shape of myocardium with the given
location. Thus, transform parameters for all three
slices are expected to be similar even in the pres-
ence of respiratory motion.

The hypothesis about basal-only slice correction can be
applied to translation and rigid motion correction methods;
the deformable correction naturally has to involve the optimiza-
tion of distinct transforms, one for each of the apical, medial,
and basal slices within each dynamic frame.

2.2 Common Registration Components

Apart from transform type, its initialization, and parameter propa-
gation, the rest of the registration components were identical for
all compared registration methods. Motion correction was
achieved through two-level multiresolution registration (half res-
olution for the first level and full resolution for the second) with a
basic gradient-descent optimizer.'? Nonlinear intensity variations
during contrast uptake captured in perfusion series and the inten-
sity values averaged across the whole series call for the use of the
mutual information (MI) image similarity metric; Mattes’ imple-
mentation of the MI image similarity metric'® was used in all
compared registration strategies. Manually defined ROIs were
used during registration to exclude irrelevant anatomical features
in the images. The ROIs were defined in the key frame of each
perfusion series. The key frame is identified visually by the maxi-
mal contrast agent concentration in the left ventricle (LV), where
image contrast between the blood pool, myocardium, and sur-
rounding structure are optimal. Rectangular ROIs were drawn
around the heart, including both LV and right ventricle (RV; as
shown in Fig. 2), because the features of the RV are important
for recovering the rotational motion. All instances of registration
described here were carried out with elliptical masks fitted inside
the ROIs. Following are descriptions of the registration strategies
used in this research.

2.2.1 Strategy 1: Translation correction for all slices

Pairwise registration of individual basal slices to the maximal
contrast basal slice with translation transform was followed
by the same procedure for the medial and apical slices and
the corresponding medial and apical maximal contrast slices.
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Fig. 2 Examples of manually defined ROlIs. An illustration of ROIs in stress perfusion series; the ROIs
were defined in a way that aimed to exclude irrelevant features, such as liver and lung tissue, which may
move independently of the myocardium; the fixed image masks for registration were obtained from
ellipses fitted inside the ROIs; the ROIs and masks were intended to exclude the features irrelevant

(or possibly detrimental) to registration.

Pairwise registration starts with the slices adjacent to the maxi-
mal contrast frame and continues toward the start and end of the
time series as shown in Fig. 3. For each pairwise registration, the
initialization of the transform was achieved in the following
manner: for the slices on either side of the maximum contrast
slice k (positions k — 1 and k + 1, respectively), the transform
was initialized to identity. As the positions of the registered sli-
ces, k —n and k + n (where n is the distance between the given
slice and the maximal contrast frame) shift from the maximal
contrast slice toward the start and end of the series, respectively,
the transforms are initialized with the parameters which were
obtained from the previously registered slices.

2.2.2 Strategy 2: Translation correction for basal slice with
transform propagation

Pairwise registration of individual basal slices to the maximal
contrast basal slice with translation transform was followed

by the application of the recovered transform for a given
basal slice to the lower slices in the corresponding dynamic
frames. Transform initialization followed the same pattern as
in strategy 1.

2.2.3 Strategy 3: Rigid correction for basal slice with
transform propagation

The average image from all basal slices was computed after the
application of transforms obtained with strategy 2. Pairwise regis-
tration of individual basal slices to the average image of the basal
slice with a rigid transform (as shown in Fig. 3) was followed by
the application of recovered transforms for a given basal slice to
the lower slices in the corresponding dynamic frames. Transform
initialization followed the same pattern as in the earlier strategies.
The center of rotation was initialized to the center of the LV
ROIL. The registration algorithm for rigid transformation optimizes
the center of rotation parameters along with the translation
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Fig. 3 Perfusion series registration. Perfusion motion correction for basal slice: in the translation cor-
rection step, the slices are registered to the basal slice from the key frame; after translation correction,
average image is computed and preregistered rigidly to the key frame; during the rigid correction step,

the average is used as the fixed image.
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parameters. Thus the potentially suboptimal initial center of rota-
tion parameters were adjusted by the transform optimizer to
obtain optimal center of rotation position.

2.2.4 Strategy 4: Deformable correction for all slices

The average image from all basal slices was computed after
the application of transforms obtained with strategy 3. It is
a common requirement for successful registration to supply
best-guess initial parameters for any type of registration. As
described by Ng and Ibafiez,'* the cascaded transform initializa-
tion in a registration pipeline was used in this study for initial-
izing rigid and deformable transforms. Pairwise registration of
individual basal slices to the average image of the basal slice
with a B-spline transform'® was carried out in a manner identical
to previously listed strategies. Next, deformable correction
was independently carried out for medial and apical slices.
Transform initialization followed the same pattern as in the
earlier strategies.

2.3 Protocol for Manual Contouring of Perfusion
Images

Manually defined contours were used as the reference standard
in all perfusion motion correction evaluation experiments. The
contours were defined in the dedicated cardiac image analysis
software QMass 7.0 by Medis Medical Imaging Systems,
Leiden, The Netherlands. For all 50 datasets, LV endocardial,
epicardial, and blood pool contours were defined for all frames
and slices in rest and stress series. For each perfusion series, a
key frame was chosen as the frame exhibiting the maximum
contrast between the ventricular blood pool and the surrounding
myocardium. First, all three types of contours were defined in
the key frame as shown in Fig. 4 (top row); next, the contours
from the key frame were copied to the rest of the series; finally,
the contours were manually translated within each slice to com-
pensate for respiratory motion. In many images, the observed
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Fig. 4 Examples of manually defined contours. An example of man-
ually defined LV endocardial, epicardial, and blood pool contours in
the key frame for basal, medial, and apical slices (top row); a typical
example of precontrast slices (from the same dataset as above),
which are unsuitable for accurate manual contouring (bottom row).
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negligible magnitude of motion did not warrant contour adjust-
ment; in most series, this was the case for the frames acquired
during breath-hold. Breath-holding in the CE-MARC study
perfusion series was timed to coincide with the first pass of
the contrast agent through the myocardium.

The approach to manual motion correction described above
possesses an inherent limitation because it is based on the
assumption that observed motion in perfusion series includes
only translation motion, while in practice, through-plane motion
and nonrigid motion can be detected in most perfusion datasets.
Theoretically, an alternative contouring approach could involve
manual contour delineation in each slice and frame. In addition
to the significant increase in time and effort this approach would
entail, this would not guarantee more accurate contours for the
precontrast stages of perfusion series, where low image contrast
renders the boundary between myocardium and ventricular
blood pool imperceptible, as shown in Fig. 4 (bottom row).

2.4 Evaluation Methods

The evaluation of the proposed perfusion motion correction was
carried out in two parts. The first set of experiments evaluated
the accuracy of the perfusion motion correction with a general
method based on the Dice coefficient metric.”® The experiments
in this set involved only motion correction strategies 1 and 2
because the reference contour set was created on the basis of
translation motion correction (comparison of rigid and deform-
able motion correction to the translation-based ground-truth
dataset would be meaningless). After motion correction, the
Dice coefficient values were calculated for left-ventricular epi-
cardial contours in all frames from the overlap with the contours
in the maximal contrast frames. Epicardial contour results are
sufficient here because of the “linked” epicardial and endocar-
dial contour translation in the manual contour dataset.

The second set of experiments compared all four strategies
for motion correction versus manual motion correction in the
context of quantitative perfusion analysis. Registration for
each frame and slice was calculated and stored as a vector defor-
mation field (VDF). Inverse VDFs were calculated for the full
dataset, because image registration causes interpolation errors in
voxel values. Using the inverse VDFs, the contours at the maxi-
mum enhancement reference frame (and slice where relevant)
were propagated to the rest of the dataset. The myocardium
was subdivided into equidistant circumferential regions corre-
sponding to different coronary arteries, as recommended by
the American Heart Association (AHA).'® The registered con-
tours were then used to generate signal intensity versus time
curves for the blood pool and the myocardium. Dual-acquisition
and dual-bolus methods are designed to deal with the nonlinear
relationship between the measured MR signal intensity and the
concentration of contrast agent in the heart. In the reported
study, this problem was addressed by converting signal inten-
sities to concentration values using the MRI pulse sequence
equation and an assumed native T1 value for blood,"” as
described in the work of Biglands et al.'® The concentration
curves from each AHA segment were then analyzed to generate
myocardial blood flow (MBF) estimates using Fermi-
constrained deconvolution.'” Myocardial perfusion reserve
(MPR) values were then calculated for each AHA segment
by dividing the stress and rest MBF estimates. MPR values cal-
culated after manual motion correction were used as the refer-
ence diagnostic values. MPR values obtained after the listed
motion correction methods were compared against the reference
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MPR values to judge the performance of a particular motion
correction method. Cascaded and pairwise evaluation of regis-
tration steps would be meaningless, as it is inappropriate to
assume each step represents the reference correction transform.
In order to assess diagnostic accuracy, the minimum segmental
MPR score was then used for each patient to generate a receiver
operator characteristic (ROC) curve using the x-ray/SPECT per-
fusion consensus diagnosis as the gold standard. Individual
ROC curves were generated in this way for each motion correc-
tion method. Each curve was then compared with the ROC
curve obtained using manual motion correction by means of
a DeLong, DeLong, Clarke-Pearson nonparametric comparison
of ROC area under the curve (AUC) values.”’

The automated motion correction strategies were implemented
on the basis of the Insight Registration and Segmentation Toolkit
libraries.'? The registration correction experiments can be run on
a typical modern workstation in serial mode or in batch mode on
a computational node. The registration experiments were per-
formed on the University of Leeds computing node of the
White Rose Grid for high performance computing. The transla-
tion correction for a single dataset was typically achieved in less
than a minute. The deformable registration of all 50 datasets

No.correction

LV RV Septum

LV RV Septum

=
2
o
o
(%)
>
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e

Translationfcorrectioh

scheduled to run in parallel was typically achieved in less than
an hour. The general trend for increased availability of computing
power makes the computational expense for a single dataset regis-
tration negligible.

3 Results

A visual example of perfusion motion correction is shown in
Fig. 5; the images were obtained by extracting reformatted pro-
files along the XZ image dimension from the 2-D slices for a
given spatial location stacked into pseudo-three-dimensional
(3-D) images (2-D + time). The extracted profiles were defined
to pass through the center of manually defined ROIs shown in
Fig. 5 to include the relevant cardiac features and contrast uptake
events. The example shows the reformatted profiles for the
series before motion correction, after translation correction,
and after rigid correction. The main indicator of motion is
the interventricular septum. In addition, the images clearly
show magnitude of motion with respect to the precontrast,
right-ventricular contrast, left-ventricular contrast, and wash-
out phases of the series. In the images prior to correction, the
magnitude of respiratory motion can be observed from the
changing position of the interventricular septum and ventricles,

Rigidl corrgction

Fig. 5 Visual comparison of perfusion correction stages. Stacked reformatted images for stress perfu-
sion series; rows: apical, medial, and basal locations; columns: before correction, after translation, and
after rigid correction; the ROls are shown with yellow boxes; within each ROI, the RV appears on the left,
interventricular septum in the center, and the LV on the right; the last two columns indicate that the bulk of
respiratory motion was recovered during translation correction; the interventricular septum is the most
obvious feature that can be used for visual validation of motion correction.
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while the series after the first correction stage show that the bulk
of motion has been recovered with translation transform. The
series after the rigid correction stage in this example are very
similar to the images after translation correction. This observa-
tion is consistent with the examples of average images and their
refinement observed after each correction stage is given in
Fig. 1, where it is demonstrated how the clarity of the cardiac
features in the ROI increases starting from the average images
prior to correction, after translation and rigid correction steps.
The average images after deformable registration do not
show significant improvement in image clarity. The images of
the series after deformable correction are not included in this
example because visually, they appear identical to the images
after rigid correction.

3.1 All-Slice Correction Versus Basal-Only
Correction Results

The comparison between the all-slice (strategy 1) and basal-only
(strategy 2) variants of perfusion motion correction is based on
the Dice metric values (as shown in Table 1) obtained from
the comparison of the reference contours and the key frame
contours after the application of translation transforms for a
given frame and slice.

A two-sample t-test suggests that the difference between the
means for the all-slice and basal-only correction strategies (u1
and 2, respectively) is not statistically significant for both rest
(1 =0.957, u2 = 0.952, t = 1.452, and p = 0.075) and stress
(11 =0.946, u2 = 0.938, r = 1.037, and p = 0.151) series cor-
rection. The important finding here is that basal-only correction
with transform propagation provides motion correction, which
is as accurate as the all-slice correction strategy.

There were no outright failures detected upon visual exami-
nation, which was performed in a manner as shown in Fig. 5.
The extremely small p-values are explained by the fact that
every t-test involved thousands of samples (on the order of
60 to 80 slices for three locations for all 50 patients).

3.2 Diagnostic Evaluation

The ROC curves in Fig. 6 compare the four variants of perfusion
motion correction versus manual perfusion correction in terms of
the ability to diagnose myocardial ischemia. The AUC values
with the associated confidence intervals are shown in Table 2.
These values suggest that the results for all four variants of per-
fusion motion correction are equivalent to manual correction. The
cut-off values that achieved the highest sensitivity and specificity
for the diagnostic test were as follows: manual correction = 1.34,
translation for all slices correction = 1.31, translation for
basal slice with transform propagation correction = 1.37,
rigid correction = 1.20, and deformable correction = 1.41.

4 Discussion

The study described in this article compares a number of auto-
mated perfusion motion correction strategies of various levels of
complexity. The proposed solution relies on the use of average
images as the fixed images during registration. In the method
presented in this article, the average images undergo refinement
during the translation-based, rigid, and deformable stages of
motion compensation. The MI image similarity metric allows
the modeling of complex mappings between pixel intensities,
where the actual form of dependency between the intensities
in the registered images does not need to be specified. The
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use of the MI image similarity metric allows the average images
to be used as fixed images during correction of perfusion slices
from precontrast, RV contrast, LV contrast, and wash-out parts
of the perfusion series. The evaluation results prove the validity
of the correction approach with translation for basal slices with
subsequent transform propagation to medial and apical slices.
The Dice metric values for LV endocardial overlap and the
ROC curves for MPR scores both confirm the initial hypothesis
that the recovery of translation motion in the basal slice is at
least as good if not better than translation correction for all sli-
ces. The motion correction provides more reliable results with
basal images due to the larger scale of the ventricles and other
image features, and the transforms from the basal slice can be
applied to the medial and apical slices because of the negligible
magnitude of respiratory motion observed between the acquis-
itions of basal, apical, and medial slices within one cardiac
cycle.

In most cases, the motion correction based on the rigid 2-D
transform provided reliable results. However, during the initial
stages of prototyping and exploration, it was observed that the
rate of failures was significantly reduced when the translation
parameters in the rigid transform were fixed. Most importantly,
this study confirms that rigid and deformable correction strate-
gies do not enhance diagnostic accuracy. In practice, the rigid
and deformable automated motion correction methods in perfu-
sion analysis are often used incorrectly as a means to deal with
myocardium shape variation induced by through-plane motion.
Through-plane motion compensation violates the underlying
principle of perfusion imaging, which relies on the idea of
tracking the concentration of the contrast agent for the same
location in the myocardium over time. In such cases, the auto-
mated motion compensation methods force the images to show
two different slices through the myocardium to be registered to
each other. The main message of this study is that the type of
automated motion correction does not affect the diagnostic accu-
racy. In addition, it must be noted that postacquisition image
processing methods such as image registration are not suitable
for solving the problem of through-plane motion, which breaks
the underlying assumptions of quantitative perfusion analysis.
Instead, this problem is more suitable for being tackled with
methods applicable during image acquisition, such as prospec-
tive tissue tracking. It is yet to be explored how motion correc-
tion methods can be adapted to emerging 3-D myocardial
perfusion techniques such as reported in the work of Jogiya
et al.?! and Manka et al.?

The difficulty in evaluating motion correction in DCE-MRI
was a key motivation for using clinical diagnosis as a reference
standard. Although we are evaluating at the contouring stage
and the final diagnosis stage, we are not evaluating at the
time versus signal intensity curve stage. If there were a single
time point registration error causing “spikes” in these curves, or
systematic translational shifts that incorporated blood pool vox-
els in the myocardial curve, then these could cause errors in
MBEF. However, it is not clear how a summary signal intensity
value could detect these changes. Average values over time
would be insensitive to localized changes and would also require
normalization for signal gain. Thus, a summary measure would
be needed to look at systematic differences in curves between
registration methods.

The limitations of this study involved the comparison against
translation-only manual motion compensation. However, the
ROC curves for MPR scores provide strong evidence of the
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Table 1 Dice metric values for strategies 1 and 2.

Table 1 (Continued).

Patient
#

Rest Stress
Strategy 1 Strategy 2 Strategy 1 Strategy 2
Dice Dice Dice Dice
average average average average
(st. dev) (st. dev) (st. dev) (st. dev)

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0.947 (0.055)
0.940 (0.050)
0.969 (0.023)
0.972 (0.020)
0.971 (0.023)
0.975 (0.018)
0.976 (0.019)
0.960 (0.028)
0.955 (0.033)
0.946 (0.029)
0.975 (0.019)
0.935 (0.051)
0.947 (0.039)
0.968 (0.017)
0.956 (0.032)
0.952 (0.022)
0.983 (0.012)
0.958 (0.028)
0.938 (0.059)
0.932 (0.041)
0.961 (0.032)
0.969 (0.018)
0.933 (0.072)
0.964 (0.026)
0.940 (0.055)
0.974 (0.019)
0.965 (0.023)
0.966 (0.044)
0.974 (0.019)
0.971 (0.021)

0.971 (0.028)

0.945 (0.048)
0.923 (0.070)
0.967 (0.029)
0.974 (0.021)
0.971 (0.021)
0.961 (0.029)
0.977 (0.019)
0.963 (0.025)
0.959 (0.030)
0.947 (0.035)
0.970 (0.024)
0.912 (0.072)
0.929 (0.059)
0.964 (0.023)
0.961 (0.027)
0.945 (0.030)
0.973 (0.025)
0.970 (0.018)
0.942 (0.043)
0.938 (0.039)
0.963 (0.037)
0.964 (0.023)
0.928 (0.071)
0.958 (0.026)
0.930 (0.065)
0.976 (0.019)
0.965 (0.029)
0.964 (0.041)
0.970 (0.028)
0.963 (0.033)

0.959 (0.045)

0.966 (0.026)
0.956 (0.047)
0.957 (0.023)
0.969 (0.017)
0.948 (0.028)
0.963 (0.019)
0.779 (0.123)
0.934 (0.072)
0.938 (0.050)
0.958 (0.025)
0.884 (0.064)
0.892 (0.077)
0.927 (0.047)
0.958 (0.030)
0.927 (0.031)
0.951 (0.032)
0.955 (0.040)
0.962 (0.021)
0.942 (0.042)
0.968 (0.020)
0.951 (0.038)
0.964 (0.024)
0.928 (0.066)
0.954 (0.027)
0.934 (0.067)
0.971 (0.020)
0.944 (0.033)
0.961 (0.030)
0.965 (0.027)
0.961 (0.026)

0.974 (0.020)

0.961 (0.034)
0.948 (0.047)
0.950 (0.031)
0.967 (0.025)
0.943 (0.039)
0.944 (0.041)
0.716 (0.112)
0.957 (0.031)
0.939 (0.042)
0.957 (0.022)
0.775 (0.090)
0.850 (0.090)
0.890 (0.073)
0.954 (0.032)
0.911 (0.038)
0.929 (0.041)
0.950 (0.043)
0.969 (0.022)
0.949 (0.041)
0.963 (0.022)
0.955 (0.033)
0.960 (0.026)
0.942 (0.045)
0.935 (0.043)
0.941 (0.061)
0.969 (0.027)
0.944 (0.035)
0.959 (0.037)
0.958 (0.037)
0.959 (0.031)

0.970 (0.020)
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Rest Stress

Strategy 1 Strategy 2 Strategy 1 Strategy 2

Dice Dice Dice Dice
Patient average average average average
# (st. dev) (st. dev) (st. dev) (st. dev)

32 0.945 (0.056) 0.940 (0.077) 0.924 (0.043) 0.901 (0.053)
33 0.961 (0.026) 0.961 (0.027) 0.943 (0.037) 0.944 (0.050)
34 0.940 (0.084) 0.929 (0.102) 0.943 (0.057) 0.940 (0.053)
35 0.951 (0.041) 0.935 (0.052) 0.949 (0.036) 0.945 (0.038)
36 0.978 (0.014) 0.977 (0.017) 0.967 (0.031) 0.966 (0.029)
37 0.969 (0.028) 0.965 (0.033) 0.925 (0.097) 0.947 (0.049)
38 0.965 (0.027) 0.964 (0.028) 0.964 (0.023) 0.959 (0.025)
39 0.969 (0.034) 0.963 (0.034) 0.946 (0.048) 0.934 (0.054)
40 0.934 (0.078) 0.909 (0.084) 0.927 (0.081) 0.932 (0.067)
41 0.944 (0.064) 0.921 (0.084) 0.913 (0.086) 0.908 (0.058)
42 0.954 (0.034) 0.957 (0.029) 0.957 (0.034) 0.955 (0.041)
43 0.954 (0.035) 0.952 (0.033) 0.960 (0.037) 0.965 (0.033)
44 0.972 (0.021) 0.957 (0.031) 0.974 (0.017) 0.961 (0.030)
45 0.961 (0.023) 0.930 (0.050) 0.965 (0.036) 0.957 (0.040)
46 0.936 (0.053) 0.914 (0.075) 0.948 (0.046) 0.943 (0.051)
47 0.954 (0.045) 0.959 (0.037) 0.972 (0.019) 0.969 (0.019)
48 0.911 (0.147) 0.937 (0.071) 0.945 (0.044) 0.933 (0.060)

49 0.970 (0.022) 0.958 (0.024) 0.962 (0.024) 0.953 (0.035)

50 0.958 (0.047) 0.964 (0.041) 0.949 (0.051) 0.945 (0.052)

Average Dice metric values (and standard deviation values) for all
contours for a given patient for strategies 1 and 2. Dice metric
values were calculated for the reference contours and the key
frame contours after the application of translation transforms for a
given frame and slice.

overall soundness of the study described here. X-ray angiogra-
phy is limited as a reference standard for myocardial ischemia
because the degree of stenosis is not always linked to a reduc-
tion in coronary, or ultimately MBF. This study used a con-
sensus diagnosis between SPECT and x-ray angiography to
obtain the best reference standard available with the CE-
MARC dataset; however, measurements could have been
improved if fractional flow reserve pressure wire measurement
had been used.

It is important to note that the diagnostic accuracies achieved
in this study are not clinically representative. Ambiguous cases,
where x-ray and SPECT measurements did not agree, were
removed. This created a reliable reference standard for our
comparison study, but our results cannot be considered repre-
sentative of clinical diagnostic performance.
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Fig.6 MPR ROC curves. ROC curves for MPR scores generated for the four variants of perfusion motion
correction: translation correction for all slices, translation correction for basal slices, rigid correction for
all slices, and deformable correction for all slices; the four variants are compared to the ROC curve
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generated for the manual motion correction.
Table 2 ROC curve statistics.
Strategy 1 Strategy 2  Strategy 3 Strategy 4
(translation, (translation, (rigid, basal (deformable,
Manual all slices) basal slice) slice) all slices)
AUC 0.93 AUC 0.89 AUC 0.92 AUC 0.93 AUC 0.92
p=0.41 p=0.88 p=1.00 p=0.92
(0.81, 0.98) (0.84, 1.00) (0.84, 1.00) (0.83, 1.00)

AUC values and the corresponding confidence intervals for the four
perfusion motion correction variants compared to manual motion
correction; the AUC values indicate that all four perfusion correction
variants are at least as good as manual motion correction. The con-
fidence interval values given in parentheses are the lower and upper
95% confidence interval limits on the AUC values.
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5 Conclusions

This study has shown that automated motion correction does not
significantly change the diagnostic accuracy of quantitative
myocardial perfusion imaging for diagnosing myocardial ische-
mia. This provides important evidence in support of the use of
such methods in practice. Furthermore, this study has shown
that the apparently more sophisticated method of deformable
registration does not improve diagnostic accuracy above that of
simple rigid registration.
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