
Simulated annealing approach to
temperature–emissivity separation in
thermal remote sensing

John A. Morgan

John A. Morgan, “Simulated annealing approach to temperature–emissivity separation in thermal remote
sensing,” J. Appl. Remote Sens. 10(4), 040501 (2016), doi: 10.1117/1.JRS.10.040501.



Simulated annealing approach to temperature–emissivity
separation in thermal remote sensing

John A. Morgan*
The Aerospace Corporation, P.O. Box 92957, Los Angeles,

California 90009, United States

Abstract. The method of simulated annealing is adapted to the temperature–emissivity sepa-
ration problem. A patch of surface at the bottom of the atmosphere is assumed to be a gray-
body emitter with spectral emissivity ϵðkÞ describable by a mixture of spectral endmembers.
We prove that a simulated annealing search conducted according to a suitable schedule con-
verges to a solution maximizing the a-posteriori probability that spectral radiance detected
at the top of the atmosphere originates from a patch with stipulated T and ϵðkÞ. Any such
solution will be nonunique. The average of a large number of simulated annealing solutions,
however, converges almost surely to a unique maximum a-posteriori (MAP) solution for
T and ϵðkÞ. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.10.040501]
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1 Introduction

The temperature–emissivity separation (TES) problem bedevils any attempt to extract spectral
information from remote sensing in the thermal infrared. Numerous methods have been pro-
posed for handling TES.1–17 In this letter we investigate the application of simulated annealing
to a MAP solution of the TES problem. The approach is an extension of earlier work on Bayesian
TES.3,5 Simulated annealing cannot give a unique solution to this problem, but we shall show
that the average of a large number of simulated annealing TES solutions converges almost surely
to a unique TES estimate.

2 Background

Simulated annealing has traditionally been regarded as a preferred method of global solution
for combinatorial optimization problems, such as the traveling salesman. In this letter, we
adapt the Metropolis algorithm18–20 to an optimization problem that lacks a unique global
optimal solution: TES. The underdetermined TES problem, notoriously,1–17 has a continuous
infinity of solutions that yield the identical optimum value for any cost or payoff function one
cares to choose.

A key part of any simulated annealing algorithm is the choice of an annealing schedule
that causes the posterior probabilities to transition from nearly uniform to very tight in such
a way as to evade the risk of the MAP search from converging to a local, rather than a global,
optimum. Factors that enter into the choice of the annealing schedule are described in Refs. 19
and 20. In what follows, we shall stipulate that a suitable annealing schedule has been supplied
and shall concern ourselves with the existence of a solution to the simulated annealing TES
problem.
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3 Simulated Annealing and the Temperature–Emissivity Separation
Problem

3.1 Metropolis Algorithm Search for MAP Solution

Suppose that we have in our possession prior knowledge that a target patch, forming part of
the lower boundary of the atmosphere, is composed of an intimate mixture of mþ 1 spectral
endmembers fϵiðkÞg at temperature T. The label k may, depending upon context, refer to the
wavenumber or to a finite number of wavenumber-averaged spectral bands.

For the development that follows, it is desirable to restate some of the main definitions used
in spectral mixing theory using language borrowed from topology.21,22 Let mþ 1 distinct points
y0; y1; · · · ym in Rm be chosen so that the vectors y1 − y0; y2 − y0 · · · ym − y0 are linearly
independent. Then the set

EQ-TARGET;temp:intralink-;e001;116;584Km ≡
Xm
i¼0

λiyi; (1)

with

EQ-TARGET;temp:intralink-;e002;116;525λi ≥ 0; ∀ i; (2)

and

EQ-TARGET;temp:intralink-;e003;116;487

Xm
i¼0

λi ¼ 1; (3)

is an m-simplex.
A spectral mixture amounts to a mapping into a geometric m-simplex, whose vertices have

spectral endmembers at a stipulated temperature T for “coefficients.” A mixture with stipulated
weights λi corresponds to the vector

EQ-TARGET;temp:intralink-;e004;116;396x ¼
Xm
i¼0

λiyi ∈ Rm: (4)

The “interior” of Km is the subset of Km for which λi > 0, i.e., the closure of its interior. The
“polyhedron” of Km, denoted as jKmj, is the set comprised of the points of x ∈ Km considered as
a subset of Rm and is a convex compact subset of Rm.

In the case mþ 1 ¼ 3, a familiar example of a 2-simplex is the ternary diagram used to
classify phreatic igneous rocks. The double three-component diagram used in the quartz, alkali
feldspar, plagioclase, feldspathoid classification23 scheme is a union of two 2-simplices, and is
an example of a “simplicial complex.”

For present purposes, the i’th pure endmember for the n’th trial is assigned to the i’th vertex
of Km

EQ-TARGET;temp:intralink-;e005;116;239yi ⇔ ϵiðkÞ; 0 ≤ i ≤ m; (5)

with the spectral mixture corresponding to a point in the polyhedron of Km.
It is necessary to account for surface temperature in a somewhat different way. Let the mini-

mum and maximum physically admissible surface temperatures be Tmin and Tmax, respectively.
Then the temperature of our target patch is given as

EQ-TARGET;temp:intralink-;e006;116;160T ¼ ð1 − λmþ1ÞTmin þ λmþ1Tmax; (6)

with

EQ-TARGET;temp:intralink-;e007;116;1170 ≤ λmþ1 ≤ 1: (7)

Corresponding to x introduced already, we have from Eq. (6)
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EQ-TARGET;temp:intralink-;e008;116;735xmþ1 ∈ I1; (8)

the unit interval, with

EQ-TARGET;temp:intralink-;e009;116;701xmþ1 ⇔ Tn: (9)

The quantity that appears in the forward model for the n’th trial is

EQ-TARGET;temp:intralink-;e010;116;663hϵðkÞBkðTnÞi ¼
Xm
i¼1

λiϵiðkÞBkðTnÞ; (10)

where BkðTnÞ is the (band-integrated, as needed) Planck function at temperature Tn. The para-
metrization of the choice fTn; ϵðkÞg in terms of the vector x is a mapping into the topological
product

EQ-TARGET;temp:intralink-;e011;116;578Hmþ1 ≡ I1 ⊗ jKmj; (11)

of I1 and jKmj. The set Hmþ1 is not a simplex nor is it necessarily a simplicial complex. It is,
however, a convex polytope and is the convex hull of its vertices xi, 0 ≤ i ≤ mþ 1. Although we
will not need it in what follows, Hmþ1 can be decomposed into either a simplicial complex or
a union of simplices.

We score trial mixtures by that we most wish to maximize; the posterior probability for the
observed spectral radiance to originate from a surface patch with temperature T and spectral
emissivity ϵðkÞ. A standard argument3,5 gives the posterior probability in terms of a MAXENT
estimator

EQ-TARGET;temp:intralink-;e012;116;451PðIjT; ϵ; σÞ ¼ exp

�
−
ðI − IFMÞ2
2σ2ðTaÞ

�
dI

σðTaÞ
; (12)

in terms of a forward model

EQ-TARGET;temp:intralink-;e013;116;393IFM ¼ f

�Xm
i¼1

λiϵiðkÞBkðTnÞ
�
⇔ fðxÞ; (13)

that is some function of the n’th trial, in each spectral bin k. We note that while the equation of
transfer is linear, the dependence of its solution IFM upon ϵiðkÞBkðTnÞ need not be. The assumed
noise variance σ2 is shown as having a formal dependence upon a parameter, the “annealing
temperature” Ta, which governs the annealing schedule for the search for an MAP solution.
The joint posterior probability in J spectral bands is proportional to

EQ-TARGET;temp:intralink-;e014;116;290PðfIkgjT; ϵ; σÞ ¼
YJ
k¼1

exp

�
−
½Ik − IFMðkÞ�2

2σ2ðTaÞ
�

dI
σðTaÞ

: (14)

If radiance Ik in each of J bands originating from a patch on the Earth’s surface has been detected
at the top of the atmosphere, the posterior probability that the surface patch is at a temperature
T given prior knowledge K is given by Bayes’ theorem as

EQ-TARGET;temp:intralink-;e015;116;204PðT; ϵiðkÞjfIkg; KÞ ¼ P½T; ϵðkÞjK�P½fIkgjT; ϵiðkÞ; K�
PðfIkgjKÞ : (15)

The noise variance is assumed to be known and the functional dependence of probabilities upon
σi is omitted. The prior probability PðfIigjKÞ for the radiances fIkg has no dependence upon
T and for our purposes may be absorbed into an overall normalization.24 Equation (15) is evalu-
ated with the aid of the prior probability for the surface to be at temperature T and has spectral
emissivity ϵðkÞ, given available knowledge K5

EQ-TARGET;temp:intralink-;e016;116;99P½T; ϵðkÞjK�dT ∝
Y
k

dϵðkÞ dT
T

; (16)
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where P½T; ϵiðkÞjfIig; K� is the conditional probability for the hypothesis that the surface
temperature is T, and the spectral emissivity ϵk, given observed radiances fIig and prior
knowledge K.

Each trial is thus scored according to the joint posterior probability for observed spectral
radiance Ii to result from surface temperature T and spectral emissivity ϵk

EQ-TARGET;temp:intralink-;e017;116;675pn ¼ P½Tn; ϵðkÞjfIig; K� ≡ pnðxÞ; (17)

where x stands for fx; xmþ1g. Thus, in going from the ðn − 1Þ’th to the n’th trial, the n’th can-
didate mixture is selected by Monte Carlo draw and pn for the new trial is compared to pn−1 for
the last one. The probability that it is accepted is18,20

EQ-TARGET;temp:intralink-;e018;116;609P ¼
�
1 if pn∕pn−1 ≥ 1

PðTaÞ otherwise
; (18)

where the probability PðTaÞ of taking a downward step in pn is determined by the annealing
schedule. The dependence of PðTaÞ on the annealing schedule is symbolized by the annealing
temperature Ta, which is taken to decrease systematically during the MAP search. The actual
form PðTaÞ takes in practical calculations and is determined empirically.

3.2 Convergence

We now examine the question of convergence. Corresponding to the sequence of m-simplices,
Km, as the number of trials n increases without bound is a sequence of trials fTn; ϵiðkÞg with
associated loci fxg ∈ Hmþ1.

As a closed bounded subset of Rmþ1, Hmþ1 is a compactum. Therefore, as n → ∞,
the sequence of trials x contains a convergent subsequence, whatever the value of m.
Correspondingly, the sequence of posterior probabilities likewise has a convergent subsequence
that, by construction, tends to the maximum value of the posterior probability, i.e., to an MAP
solution for T and ϵðkÞ.

Consider the map x 0 ¼ ΦðxÞ given by

EQ-TARGET;temp:intralink-;e019;116;371ΦðxÞ ¼
�
x 0 if pnðx 0Þ − pnðxÞ ≥ 0

x otherwise:
: (19)

The mapping of Eq. (19) gives the action of the Metropolis algorithm according to Eq. (18) at
sufficiently late times in the annealing schedule so that a transition to a state of decreased pos-
terior probability occurs rarely, in the limit, almost never. We have noted that at a sufficiently
late point in the annealing schedule, trials that decrease the posterior probability [Eq. (17)]
will become infrequent. We may elide any such trials without affecting the convergence of
the subsequence, which then takes the form

EQ-TARGET;temp:intralink-;e020;116;254xnþ1 ¼ ΦðxnÞ: (20)

For all n greater than some M, convergence of the subsequence implies the Cauchy condition

EQ-TARGET;temp:intralink-;e021;116;211dðxn; xnþ1Þ ¼ d½xn;ΦðxnÞ� < ϵ; (21)

(with the Euclidean norm supplying a suitable metric for finite m) so that

EQ-TARGET;temp:intralink-;e022;116;168x → ΦðxÞ: (22)

The mapping of Eq. (19) generates a sequence of trials x for which pn is nondecreasing. By
Zorn’s lemma, the set comprised of all admissible trials x has at least one element with a maximal
value of pn. We note that maximizing pn also maximizes the information-theoretic entropy by
Eq. (12). According to the usual statement of the second law, the state of maximum entropy is
one of thermodynamic equilibrium. We may, in view of the thermodynamic analogy underlying
the Metropolis algorithm, therefore call the limit Eq. (22) an equilibrium point.

JARS Letters

Journal of Applied Remote Sensing 040501-4 Oct–Dec 2016 • Vol. 10(4)



This nomenclature is attractive for another reason. In the limit, Eq. (22) amounts to a fixed
point of Eq. (19). Ordinary fixed-point theorems are inapplicable to Eq. (19) because it is neither
continuous nor semicontinuous: It can map an open set ∈ Hmþ1 to a singleton x 0. We can, how-
ever, adapt the celebrated construction introduced by Nash25 to prove the existence of a fixed
(equilibrium) point of an equivalent self-mapping.

In fact, we shall prove a somewhat stronger result. Consider

EQ-TARGET;temp:intralink-;e023;116;663ϕα ¼ max½0; pnðxαÞ − pnðxÞ�; (23)

for stipulated x. The function ϕ is continuous in the mixture xα. Define the mapping N∶x → x 0

by

EQ-TARGET;temp:intralink-;e024;116;609x 0 ¼ xþP
αϕαxα

1þP
α
ϕα

; (24)

where the index α is taken to run over members of any finite set of admissible trials xα in the
execution of the Metropolis algorithm. (One may think of the collection of all sequences xα in
ensemble-theoretic terms.) Suppose that x 0 is a fixed point under Eq. (24). In Eq. (24), some
values of α correspond to choices for fTi; ϵiðkÞg for which the posterior probability does not
increase

EQ-TARGET;temp:intralink-;e025;116;497pnðxαÞ − pnðxÞ ≤ 0: (25)

For these values of α

EQ-TARGET;temp:intralink-;e026;116;454ϕα ¼ 0: (26)

If the choice x is fixed under the mapping N in Eq. (24), then the contribution to x 0 from any xβ
must not decrease; therefore, ϕβ ¼ 0, ∀ β, lest the denominator in Φ exceed unity. Put another
way, no other choice of fTi; ϵiðkÞg can increase the posterior probability, but that is the definition
of an equilibrium point. If, on the other hand, an equilibrium point x maximizes the posterior
probability [Eq. (17)], every ϕα vanishes, so that x is a fixed point.

Equation (24) is continuous and maps points x into a convex compactum ⊂ Rmþ1. A fixed
point

EQ-TARGET;temp:intralink-;e027;116;339x ¼ NðxÞ; (27)

Therefore, exists according to the Brouwer fixed-point theorem that, by construction, maximizes
the a-posteriori probability of x.

The mapping Eq. (19) generates a sequence of trials x for which pn is nondecreasing and
gives the maximal value of pn in the limit, while Eq. (27) demonstrates the existence of a trial x�

for which pn cannot be made greater. In view of the ensemble-theoretic freedom to choose xα,
we may identify the limit in Eq. (22) with the fixed point in Eq. (27). Therefore, a convergent
subsequence of annealing trials exists that tends to an equilibrium point. Moreover, Eq. (27)
demonstrates that the annealing search can, in principle, find x� in a finite number of trials.
We conclude that, granted a suitable annealing schedule, there exists at least one convergent
sequence of trials that tends to MAP surface temperature and spectral emissivity estimates
consistent with observed spectral radiances Ik.

3.3 Uniqueness

Sequential compactness guarantees the existence of a convergent subsequence of trials. In prac-
tice, we must expect that there will be more than one such sequence. The nonuniqueness of
solutions to the TES problem suggests that there will be a continuous infinity of possible trials
fTn; ϵiðkÞg that yield any stipulated value for the posterior probability. In any realizable search
strategy, however, we need only contend with a countable set of convergent subsequences.
Among these, there will be one for which the posterior probability is greatest. Its limit will
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be the closest approach to the MAP solution achieved by simulated annealing. In the nature of
things, more than one convergent subsequence may be expected to exist that yields this same
maximal estimate, with the same asymptotic annealing temperature T∞

a . We ignore all subse-
quences except these maximal ones.

In Refs. 5 and 3, expectation values for T and fϵðkÞg over the the posterior probability
[Eq. (15)] were shown to give good estimates for physical surface temperatures and emissivities.
We claim that the mean of a large number of subsequences that converge to the limiting MAP
value will tend to the expectation values for T and fϵðkÞg with respect to Eq. (15).

The MAXENT estimator is constructed from the posterior probability of noise power in
a spectral bin. For the sake of simplicity, we assume identical noise power in each bin.
(This assumption is inessential and may be relaxed.) A fully annealed MAP estimate may
be thought of as an individual Bernoulli trial drawn from the likelihood function for
fTn; ϵiðkÞg. By construction, all such trials are independent and identically distributed with
bounded expectation values. Moments over Eq. (15) are bounded despite bad behavior of
the Jeffreys prior at T ¼ 0, because of the rapid decay of the exponentials away from the
MAP solution, as L’Hôpital’s rule demonstrates.

Let

EQ-TARGET;temp:intralink-;e028;116;532T̄ ¼ 1

N

XN
i¼1

Ti; (28)

and

EQ-TARGET;temp:intralink-;e029;116;470ϵðkÞ ¼ 1

N

XN
i¼1

ϵiðkÞ; (29)

be the means of MAP surface temperature and spectral emissivity taken over N convergent
subsequences. Suppose the covariance matrix Σ of the trials to be nonsingular. We invoke
the multivariate central limit theorem to conclude the mean values converge weakly to the
multivariate Gaussian distribution

EQ-TARGET;temp:intralink-;e030;116;377

ffiffiffiffi
N

p

2
666664

T̄ − hTi
ϵð1Þ − hϵð1Þi

..

.

ϵðmÞ − hϵðmÞi

3
777775
↝Nmð0;ΣÞ: (30)

Reliance on the mixing hypothesis in the form given by Eq. (10), however, brings with it the
concern that the relevant covariance matrix might be singular. In that event, the strong law of
large numbers26,27 ensures

EQ-TARGET;temp:intralink-;e031;116;253T̄ ~
a:s:

hTi; (31)

and

EQ-TARGET;temp:intralink-;e032;116;203ϵðkÞ ~
a:s:

hϵðkÞi; (32)

but without giving estimated variances of the mean values, such as with Eq. (30).
To the extent that the estimator used in the simulated annealing search is zero-mean error,

we conclude the estimates yield accurate values for the physical values of T and fϵðkÞg. As the
spectral weights x, lying as they do between zero and unity, possess bounded moments, this
conclusion applies to the limiting mean values of fTn; fxnmgg as well.
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4 Discussion

The practical utility of the mathematical development in this letter may be questioned. We briefly
address two possible concerns.

A legitimate concern is that the spectral emissivity of natural ground covers in the wild will
seldom be known to the level of accuracy found in Ref. 28. While true in general, this concern
has not dissuaded other researchers from relying upon spectral unmixing.

While convergence of the algorithm has been proved to our satisfaction, we have no equally
satisfactory estimates of the rate of convergence, with the consequence that the choice of annealing
schedule remains a matter of trial and error. In response to this concern, the availability of mas-
sively parallel computation made possible by the ready availability of cheap graphics processing
unit arrays means that massive processing requirements need not preclude the use of a resource-
hungry algorithm if that algorithm can provide a performance not attainable by other approaches.

5 Conclusion

In this letter, the Metropolis algorithm has been adapted to formulate a simulated annealing
approach to the TES problem for a spectral mixture. We have presented a proof of convergence
of simulated annealing searches for candidate MAP TES solutions. We have additionally shown
that the average of a large number of these candidate MAP solutions converges almost surely to
a unique estimate of surface temperature and spectral emissivity that, given a forward model
leading to an unbiassed estimator for T and fϵkg, closely approximates the true values of
these quantities.

The simulated annealing approach to TES by spectral unmixing offers something that other
TES algorithms do not. By construction, it gives (in the limit) the unique best estimate in an
MAP sense, for the remote determination of surface temperature and spectral emissivity of a
patch of ground that is known to be comprised of a spectral mixture of a stipulated set of spectral
end members.
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