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Abstract. In the framework of a study of ice formation in Antarctica, synthetic aperture radar
(SAR) image acquisitions were planned over Terra Nova Bay (TNB). Thanks to the European
Space Agency (ESA) Third Party Mission program, Cosmo-SkyMed and Radarsat-2 images
over TNB were obtained for the period of February 20 to March 20, 2015; in addition, available
Sentinel-1 images for the same period were retrieved from the ESA scientific data hub. The first
inspection of the images revealed the presence of a prominent eddy, i.e., an ice vortex presum-
ably caused by the wind blowing from the continent. The important parameters of an eddy are its
area and lifetime. While the eddy lifetime was easily obtained from the image sequence, the area
was measured using a specific processing scheme that consists of nonlinear filtering and Markov
random field segmentation. The main goal of our study was to develop a segmentation scheme
to detect and measure “objects” in SAR images. In addition, the connection between eddy area
and wind field was investigated using parametric and nonparametric correlation functions; sta-
tistically significant correlation values were obtained in the analyzed period. After March 15,
a powerful katabatic wind completely disrupted the surface eddy. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.
JRS.11.026041]
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1 Introduction

The area of Terra Nova Bay (TNB), Antarctica, has been of particular interest for the Italian
scientific community in the last 30 years as the Italian Antarctic base Mario Zucchelli
Station (MZS) is located in its vicinity. Thanks to the synthetic aperture radar (SAR) imagery
of the area available today, a study of the dynamics of ice formation at TNB was planned for
summer 2015. The European Space Agency (ESA) Third Party Mission program, which pro-
vides Cosmo-SkyMed (CSK) and Radarsat-2 (R-2) images, was used to carry out the study. A
total of 14 CSK and 14 R-2 images for the period of February 20 to March 20 were retrieved; in
addition, Sentinel-1 (S-1) images were also downloaded from the ESA scientific data hub. Wind
data from the automatic weather station (AWS) “Eneide,” located in the vicinity of MZS, were
obtained from the Italian Antarctic Research Program1 as an ancillary data set.

The first survey of the SAR images revealed an unexpected surface feature, i.e., the presence
of a prominent ice eddy. Ocean eddies have been found to play a major role in heat and salt
transport2 and in water mass transport.3 For example, discrete eddies may account for up to 60%
of the eddy kinetic energy in strong eddying currents, such as the Antarctic circumpolar current
(ACC).4 Field studies have also shown that discrete eddies have a major impact on biological
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productivity.5 A recent study6 provided an eddy census data set from a global ocean simulation
over a period of 7 years and showed that the ACC is the region with the largest number of eddies
in the world.

Satellite remote sensing provides a variety of platforms and sensors for monitoring sea sur-
face and sea–atmosphere interactions and is therefore useful for observing mesoscale eddies,
which may reach horizontal scales above 100 km and time periods from days to weeks. A
marked variation of the sea surface temperature (SST) is one of the clearest indications of
an eddy. Exploiting this feature, a neurofuzzy eddy detector was implemented with morphologi-
cal descriptors, using the SST patterns of optical/infrared Nation Oceanic and Atmospheric
Administration Advanced Very High Resolution Radiometer (NOAA AVHRR) images.7 In
another study, the eddy shape was detected from the specific geometric structures of the rotating
SST thermal wind velocity field.8

Vertical displacements of the sea surface are sensed by radar altimeters. Using the pattern of
sea surface level anomaly (SLA), the eddy core area was detected with a set of specific delin-
eation rules;9 in this case, the accuracy of the detection is limited by the heuristic function of the
geometric criteria. Another proposed method combines the SLA gradient with a map of spatial
markers for solving the Watershed transform.10 Although it can observe only large-scale singu-
larities, the radar altimeter is widely used in oceanography. Combining SSTand altimeter data with
the geophysical knowledge of a particular site leads to a marked improvement in eddy detection.

In SAR imaging, the surface variations produced by the eddy’s revolving motion yield a
modulation of the backscattered signal. Similarly, with a favorable wind speed, the surface
films can enhance the imaged contrast of the eddy filaments. Tracking the signature of sea sur-
face films can be performed by maximum cross correlation or by optical flow techniques;11 in
addition, the detection of slick patterns can be complemented by visual criteria.12 In changing
environmental conditions, the capacity of SAR to reveal eddy singularities by sensing the usual
manifestations (sea surface roughness or marine surface films) is a challenging task. For this
reason, synergic SAR modeling may include complementary data, such as SST imagery,
radar altimetry, ground truth measurements, and chlorophyll observations.13

European satellites provide SAR images operating in C- and X-band: as these images are
free, they were chosen for this study. Recent papers have shown that C- and X-band images in
HH polarization are the most effective in sea-ice detection.14,15 C- and X-band often display very
similar distributions; but, when comparing their performances in discriminating the different
kinds of sea ice, Dierking16 found that, only in the case of very thin ice, X-band is superior
to C-band. Where the L-band is concerned, it was demonstrated its greater ability in detecting
ridges and other sharp ice structures, but its lower sensibility to microscale ice structures.17 Sea-
ice conditions usually have a dynamic evolution, a circumstance that may introduce ambiguities
between different SAR frequency bands; in any case, Robinson18 estimates that no more than a
few percent (<3% to 5%) of all ocean SAR images, captured in different bands, reveal substantial
mesoscale features.

The first part of the paper deals with the detection of a time-varying ocean eddy in SAR
images, exploiting a specific example of the singularity: rather than using the radar signal,
the analysis is carried out by an indirect solution, which extracts the vortex extent outlined
by the floating ice fragments of the scene. This is an alternative method compared with
those used in previous surveys.

The task to be carried out is the identification of the eddy structure and the extraction of its
main parameters: area and lifetime. In our case, from the sequence of SAR images in which the
eddy was last seen on 9th March, its lifetime was about 20 days; indeed, from the image of
March 15th, the ice eddy appears to be completely disrupted, and a well-defined polynya
comes into sight. With regard to eddy area, a specific image processing scheme was developed.
The scheme consists of the following stages: (1) nonlinear filtering, (2) segmentation, based on
the Markov random field (MRF) theory, using a contextual approach applied both to the original
and to the filtered image, and (3) extraction of the eddy area using an active contour detection
algorithm, which works in an iterative manner.

The second part of the paper focuses on the role of the katabatic wind of TNB in generating
the eddy singularities. It is well known that small-scale eddies, such as those produced at high
latitudes, can be generated by atmospheric forcing;19 in this paper, the correlation between
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Eneide wind data and eddy extent is quantified as a joint function by means of two different
statistical functions. The analysis provides elements for evaluating the temporal matching of
the two variables.

2 Methods

First, the SAR images were preprocessed using TeraScan software:20 all the images were
projected onto a common geographical reference with a pixel size of 100 m. Figure 1
shows one example of a georeferenced image. From each georeferenced image, a subset, or
imagette, covering the area of TNB, was extracted; a pair of these imagettes are shown in Fig. 2.

2.1 Filtering by Morphological Reconstruction

As SAR images are degraded by speckle noise, the identification of the elements of an SAR
scene is a complex task. Both classical21 and adaptive filters22,23 are able to remove only a limited
amount of speckle degradation in the proximity of the contour regions. The result is a blurred
detection. In the first stage, concepts of gray-level morphology were applied to preserve contour
information. The aim is to obtain a scene image, which is less degraded by speckle and integrated
into more homogenous regions. Based on a well-defined algebra, mathematical morphology24 is
a powerful tool for describing topological structures. Basic structuring shapes are the elements
for defining the logical operations of morphological set theory. Two important operations are
erosion and dilation, which are defined using the original image fðx; yÞ and a structuring element
bðx; yÞ. The coordinates ðx; yÞ and the gray level define a Z3 space. The erosion of the image
fðx; yÞ by the structuring element bðx; yÞ is the operation: ½f⊖b�ðs; tÞ ¼ min½fðsþ x; tþ yÞ
−bðx; yÞ�, where ½ðsþ xÞ; ðtþ yÞ� ∈ Df and ðx; yÞ ∈ Db. Similarly, the dilation of the image
f by the structuring element b is the operation: ½f � b�ðs; tÞ ¼ max½fðs − x; t − yÞ
þbðx; yÞ�, where ½ðs − xÞ; ðt − yÞ� ∈ Df and ðx; yÞ ∈ Db. In both operations Df and Db are

Fig. 1 Georeferenced Sentinel-1 image of February 25, 2015, TNB, after being remapped onto
an equidistant cylindrical projection.
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the domains of f and b, respectively. Erosion and dilation can be applied in a given sequence to
enhance or eliminate image structures. Its combined use defines the opening (an erosion fol-
lowed by a dilation) and closing (a dilation followed by an erosion) operations. Both procedures
have specific interpretations. For example, the opening operation smooths contours and inter-
rupts narrow sets of pixels, and an opening followed by a closing defines an elementary smooth-
ing process. Mathematical morphology provides the basic theory to design nonlinear filters,
which are suitable, for example, for detecting edges or revealing specific patterns. One case
of interest is when the grayscale “morphological reconstruction”25,26 takes into account a
“marker” image fe, a mask image f, and a structuring element b, defining a four- or eight-
pixel connectivity matrix. The morphological reconstruction consists of the iterative dilation
operation

EQ-TARGET;temp:intralink-;e001;116;293hiþ1 ¼ ðhi � bÞ ∩ f until stability when hiþ1 ¼ hi; (1)

where fe ⊆ f and h1 ¼ fe, and at the last j dilation, the reconstruction is RfðfeÞ ¼ hj.
In a practical implementation, the reconstruction can be performed taking advantage of

the morphological characteristics of the opening operation. The resulting “opening by
reconstruction of erosion” or just “opening by reconstruction” of the SAR image f is defined
as fr ¼ Rfðf⊖bÞ. Thus, the variables of Eq. (1) are the image f and the result of the erosion
operation, which is the reference marker fe. At this stage, the visual effect is that the crucial
structures eroded by the initial operation can be fully recovered. As the opening and the closing
operations affect the bright and the dark elements, respectively, the sequential use of this
filter can define a more suitable smoothing filter called opening–closing reconstruction
focr ¼ Rfrðfr � bÞ, where Eq. (1) is also applied for reconstruction. The structured elements
of image f are affected by the size and shape of the b array. Depending on the structure of
the scene features, the b element applied in this paper is a flat disk-shaped structuring element
defined by a five-pixel radius. As a result, small, bright, and dark features are reduced, and the
contours of the primary regions are reconstructed well. This is a simple but functional process for
soft filtering the random behavior of the speckle.

Fig. 2 CSK imagettes covering the analyzed area of TNB, 800 × 600 pixels: (a) March 2 and
(b) March 5, 2015.
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2.2 Segmentation

In the second stage, the scene is modeled by means of MRF theory. To define the conditional
probability in terms of the Bayesian equation, the proposed algorithm analyzes the information
derived from the gray-level data. With this scheme, the a priori model implements a homo-
geneity criterion based on the local label distribution. The segmentation result is obtained
by a recursive stochastic minimization scheme. Before seeking the eddy boundary, the scene
data require topological conformation, which means we need to have a clean space inside
the eddy area, that is, we need to detect and remove the sea-ice objects located inside. This
assignment is carried out by a hierarchical labeling process, defined by the topological properties
of the ice fragments. Next, the eddy contour extraction task is performed. The geometry of the
eddy is not regular and is usually defined by nonclosed contour segments. Classical edge detec-
tion algorithms are not very useful because of the complex contour distribution. To overcome
this problem, an active contour detection algorithm is used. Moving in an iterative way, the active
contour is placed according to both the gradient and the segmented image information. The final
result is a binary mask, which provides the detection of the closed form of the eddy. In this way
the final size of the eddy area is derived.

Let us consider two random variables, X andW. In a maximum a posteriori (MAP) approach,
let X be the image to be segmented and W be the segmentation result, W ¼ fw1; w2; : : : ; wMg,
where M is the number of labels of the sample space. The Bayesian rule is applied to define the
equation of the segmentation model PðWjXÞ ¼ PðX;WÞ∕PðXÞ, where the joint probability term
is PðX;WÞ ¼ PðXjWÞPðWÞ. As the total probability of X is a common term throughout the
process, a simpler expression is obtained by making this term equal to 1. The resulting expres-
sion is PðW ¼ wijXÞ ≈ PðXjW ¼ wiÞPðW ¼ wiÞ.

The segmentation problem can be considered as a probabilistic labeling process.
According to the Bayes theory, the MAP estimation equation can be written asbW ¼ arg maxx½PðWjXÞ� ≈ arg maxx½log PðXjWÞ þ log PðWÞ�, where bW is the label field to
be estimated.

The Markov hypothesis makes the assumption that both fields X and W are expressions of
MRFs, and, in this case, the Gibbs probability distribution27 can be used to represent the terms of
the Bayes estimation. The Gibbs distribution follows an exponential law; hence, the resulting
Markovian estimation equation is

EQ-TARGET;temp:intralink-;e002;116;357

bW ¼ arg min
x
½UðWjXÞ� ≈ arg min

x
½UðXjWÞ þ UðWÞ�; (2)

where the probability that a given pixel X ¼ x belongs to a particular wi label is derived by
minimizing the a posteriori energy function UðW ¼ wijX ¼ xÞ. In this paper, the conditional
energy term UðXjWÞ is estimated using the pixel gray-level information, and the a priori law
UðWÞ is achieved by a contextual analysis of the local label structure.

To define the information provided to the conditional energy term, the proposed algorithm
considers both the original image X and the filtered one Z. The morphological filtering performs
an important noise smoothing task; but, depending on the topology of the structuring element b,
thickening or removal of small objects may occur in connected regions, with a shifting of the
image features. Some important information still remains in the raw image, and it can be used to
complement the segmentation process. An interesting alternative to the combined use of infor-
mation sources arises when one considers the probability property of independence28 as being
conditioned by the field of labels. The probability of the joint gray-level information of pixels Xi

and Zj, given the label Wk, is obtained by the product rule:
PðXi; ZjjWkÞ ¼ PðXijWkÞPðZjjWkÞ. Including the former property in the Markovian

model, Eq. (2) is approximated as

EQ-TARGET;temp:intralink-;e003;116;139

bW ¼ arg min
x
½UðWjX; ZÞ� ≈ arg min

x

�
λ1UðXjWÞ þ λ2UðZjWÞ

λ1 þ λ2
þ UðWÞ

�
; (3)

where UðZjWÞ is the conditional energy function of the gray-level Z occurring given the W
label. This equation involves the conditional random field of the two-level model. In addition,
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λ1 and λ2 are the weight coefficients of the conditional membership functions. With these coef-
ficients, it is now possible to assess the energy contributions of images X and Z.

To define the a priori energy functionUðWÞ, the Ising model is used; the Hamiltonian is then
given by Uðwi; wsÞ ¼ fα if wi ≠ ws;−α if wi ¼ wsg, where α is the strength of interaction of
the ferromagnetic model and Uðwi; wsÞ ¼ −α when pixels at coordinates i and s of the seg-
mented image W have the same label w. To define homogeneous regions, the minus sign sup-
ports the minimization process in Eq. (3). Binary segmentation is required to detect the scene
elements. The MRF model provides the required binary field by labeling the set of pixels as ice
or nonice (open sea). The segmentation result is obtained by a simulated annealing scheme.29

Using λ1 ¼ λ2 ¼ 0.5, the convergence is achieved by applying a number of 35 iterations, with a
strength parameter α ¼ 0.3.

As an example of the preprocessing steps, Fig. 3 shows the results obtained with the non-
linear filter (a) and using the binary Markovian segmentation (b). These results were obtained
with the CSK image of March 5th [Fig. 2(b)].

2.3 Toward Eddy Region Bounding

The MRF segmentation provides a binary result, where the background of the SAR scene is
displayed as black pixels for the open-sea regions and as white pixels of the detected sea-
ice objects. Some dynamic characteristics of the wind can be seen in the spatial distribution
of the sea-ice elements; this wind signature is easily detected as these elements form a sort
of ring. The sea-ice objects do not define a perfect circle (see Figs. 2 and 3) as its contours
are nonstationary. To complete the scene description, we must deal with a number of minor
sea-ice fragments, which can be seen inside the eddy area; they are not part of the eddy topology
and can lead to spurious detections. Before completing the detection and the extraction of the
eddy contour, it is important to remove these sea-ice fragments from the scene; to achieve this
goal, the ice objects are classified using a labeling method.

Graph theory30 provides useful concepts for describing the objects of a scene. A graph G is
defined as the set G ¼ ðV; EÞ, where V ¼ fvi; i ¼ 1; · · · ; Ng is a set of “vertices,” and E is a set
of “edges.” In our case, the set of vertices refers to the lattice structure of the image, and the set of
edges is formed by linking pairs of pixels of the set V. One way of characterizing the edge

Fig. 3 Preprocessing of a CSK imagette: (a) filtered image and (b) Markovian segmentation result.
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features is done by describing the “adjacency” and “connectivity” of set V. Two pixels are four-
adjacent when they share a side. A set of pixels is defined as connected when it is not divided by
a boundary. A region is called four-connected or ν4 if a finite chain links every pixel to a set of
consecutive four-neighbor pixels. The ν4 provides an important relationship for labeling seg-
mented scenes. An “ordering list” is arranged for labeling the four-connected regions,31 and
the number of pixels of each object Si is obtained. A percentage of the image size is used
to fix a threshold Tr. When Si < Tr, the related sea-ice object is removed. Figure 4 shows
the result of applying this process to the CSK imagette of March 5th. A spotless area is observed
inside the eddy [Fig. 4(b)], and the scene is now suitable for deriving the eddy boundary.

2.4 Extraction of Eddy Area

The next stage performs the detection of the eddy boundary and the extraction of its area. On
binary images, background and foreground objects are very well defined; consequently, pixel-
based edge detection algorithms produce excellent results.32,33 A serious challenge is to extract
and link the contour segments that define the closed form of the eddy contour from the contour
set of the whole image. Medicine and biology imaging often deal with curvilinear objects. Some
well-known techniques, which are useful for object representation, feature extraction, and para-
metric contour description of circular and elliptical objects. A direct least-squares fitting
method34,35 was proposed to trace the boundary of an elliptical object. By minimizing the ellipse
constraint, these methods claim to be invariant to affine transformations. The Hough transform is
another way of detecting regular shapes. In another case,36 the minimum and maximum radii
were manually drawn in an edge map of an embryo image. Some circular forms lie in the image,
and each pixel of the edge map is considered as a potential element of a circle. A systematic scan
by the Hough transform detects the circular structures with a size defined by the radius range.
The result is a set of potential circles but with spurious findings. Thus, further supervised val-
idation is required. The main drawback of this boundary analysis is that the geometry of the eddy
is not regular as it is formed by the connected contour segments of several sea-ice objects; this
means that fitting its boundary to a circle or an ellipse is only a rough approximation. Thanks to

Fig. 4 CSK imagette of March 5. The eddy contour detected and outlined: (a) the remapped SAR
image and (b) the binary image with eddy area free of sea-ice objects.
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the parametric representation, a formal basis for the boundary analysis of the eddy extent can be
provided.

To solve our problem, an active contour detection algorithm37 is applied. Moving in an iter-
ative way,38 a pixel-based template develops, based on both the gradient and the segmented
image information, evolving toward the boundary of the eddy. A parametric closed curveCðsÞ ¼
fxðsÞ; yðsÞjs ∈ ½0;1�g defines the deformable model by a set of coordinates ðx; yÞ, where s is
the normalized length boundary of the active contour.

The deformation process is modeled using terms as follows: (i) internal energy Ec½CðsÞ�,
which makes the template regular; (ii) external energy, which leads the template toward the
regions of high gradient Ei½CðsÞ� þ Econ½CðsÞ�; and (iii) external constraint forces Econ½CðsÞ�
for manual regulation by the user. The total energy function is given by

EQ-TARGET;temp:intralink-;e004;116;604Esnake ¼
Z
S
fEc½CðsÞ� þ Ei½CðsÞ� þ Econ½CðsÞ�gds: (4)

The internal energy is described by Ec½CðsÞ� ¼ w1ðsÞC 0ðsÞ2 þ w2ðsÞC 0 0ðsÞ2, where w1, w2,
C 0, and C 0 0 are the terms of elasticity, rigidity, and the first- and second-order spatial derivatives
of the curve CðsÞ, respectively. S is the closed contour of the snake. The elastic energy is mod-
eled by C 0ðsÞ, and the bending energy is controlled by C 0 0ðsÞ. To compute the derivatives, the
energy function is discretized by a finite difference method. The image energy, Ei, leads the
snake to the edge regions using a gradient operator. The constraint energy, Econ, allows manual
intervention by the user, assigning attractive or repulsive operators to specific regions.

An initial pixel-based template is manually placed near the eddy boundary. Equation (4) is
minimized, and the curve evolves until it fits the eddy shape. The spline CðsÞ iteratively moves
into pixels with lower energy, seeking a better match to the nearest edges. The spline pixels are
updated by dEsnake½bCðsÞ þ αðsÞ�∕dα ¼ 0, where bCðsÞ is the solution at a given iteration, which is
perturbed by a small deviation αðsÞ. The information required by the energy term Ei can be
provided by the rate of change of the gray level, which is usually computed by the gradient
operator by means of the partial derivatives. Instead of implementing the gradient operator
with spatial convolution, we propose to express the image energy term Ei using the discrete
formulation of the morphological gradient gðwÞ ¼ δBðwÞ − εBðwÞ. Ei is thus given by the mor-
phological operators: dilation δBðwÞ and erosion εBðwÞ, where w is the binary segmented image.

The active contour algorithm was applied to the set of imagettes with the eddy area free of
sea-ice fragments, as obtained in Sec. 2.3. To enhance the detection procedure, the imagette of
March 5th is used as a reference: in Fig. 4(a), the closed form of the eddy is shown in blue color
using the remapped SAR image, and in Fig. 4(b) with the binary eddy area free of sea-ice objects.

3 Results

The eddy area values are shown in Fig. 5. They were obtained using the processing scheme
described above as applied to the sequence of imagettes extracted from CSK, R-2, and S-1
images.

The interaction between variables can be computed by measuring the degree of relationship
with the assumption of linear or nonlinear dependence. To reveal the coupling between the forc-
ing wind and the induced eddy area, with an alternative perspective, we preferred to analyze the
case of a linear relationship by means of two formal statistical correlation functions. The exami-
nation is derived from the time series analysis used to provide explicit indicators of the depend-
ence on wind field. To quantify the linear interaction between geophysical processes and
meteorological variables, the running correlation coefficient Rcc function

39 is simply the adop-
tion of the second-order statistic moment of a bivariate random variable. Using local windows
overlapped in time, the Rcc function is the first analysis method.

Let N be the total data length; Xk, the wind speed; and Yk, the measured eddy area; the Rcc of
the two centered signals, given the i’th step with a window length ð−n; nÞ, is computed using
both first- and second-order moments of the marginal variables
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EQ-TARGET;temp:intralink-;e005;116;513RccðiÞ ¼
Piþn

k¼i−n½xk − EðxÞ�½yk − EðyÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPiþn
k¼i−n ½xk − EðxÞ�2 Piþn

k¼i−n ½yk − EðyÞ�2
q ; i ¼ nþ 1; : : : ; N − n; (5)

where Eð·Þ is the expected value computed with the window width ð−n; nÞ. The total length of
the Rcc evaluation is N − 2n, which shows the time evolution of the linear interaction between
the discrete series variables.

In the second analysis, we propose to apply the Spearman correlation coefficient,40 which is a
nonparametric rank statistic measure of the connection between variables. One important feature
of this function is that it is less affected by single influential observations (outliers). The central
information provided by this function is the monotone dependence between variables. Using the
same moving window of the Rcc function, a high correlation value means that both variables have
corresponding increasing or decreasing distributions. This may seem a simple feature; but, it is
another element that demonstrates the association involving the two time series. The “monotonic
relationship” of the Spearman correlation complements the “linear dependence” displayed by
the Rcc function.

The AWS Eneide, located on TNB near MZS, collects the wind channeled by the mountains
of the inner continent (see Fig. 1) and provides real-time and archived meteorological data. Wind
speed and direction of Eneide were composed in one single figure defined as “effective wind
field,” i.e., the wind component pushing eastward or at 270 deg. The acquired data are trans-
mitted by the Argos satellite every hour and received in Italy. For the 18-day study period,
February 20 to March 9, the collected wind field is shown in Fig. 6 (each value is the average
over the previous 6 hrs).

The final step is the statistical inference of the dependence between the two variables. The
pairwise linear correlation function was analyzed by Eq. (5) using bounded temporary windows.
This function makes it possible to explain the interaction of the geophysical variables in discrete
time series. Using a time lag of n ¼ 2, Rcc is computed with windows of 5 units (time segment
of 30 hr); the result is shown in Fig. 7(a). The result of the Spearman correlation is shown in
Fig. 7(b). Both variables, eddy extent and wind speed, can be considered as random variables,
but a joint connection is observed. Figure 7 shows that 57% of the coefficients have a correlation
jRj > 0.6, which, using statistical criteria, confirms both a strong linear relationship and a mono-
tone association between the two variables.

By statistical criteria, a very strong correlation arises when jRj > 0.8. Figure 7 shows that
only 26% of the paired data are very strongly correlated. The probability theory states that two
random variables are independent when the occurrence of one variable does not affect the mani-
festation and the evolution of the second one, and, consequently, the variables are uncorrelated.
Given that strong and very strong correlations are widely distributed, our results show that the
analyzed variables are not statistically independent. It is well known that eddies can be induced
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Fig. 5 Eddy area evolution obtained using the processing scheme described above.
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by other geophysical events, such as the interaction of sea currents with undersea topography,
or by convection caused by the sea surface gradient temperature. Related information of
such events was not available for this study; nevertheless, the correlation sequence reveals
a dependency between wind field and eddy extent variation.

4 Discussion

Identifying eddy singularities in SAR images is only a partially solved problem given the com-
plex signature of the sea/atmosphere modulation pattern. For this reason, the analysis of the
scene features requires a specific processing procedure as suggested by the present paper.
Based essentially on the Bayesian estimation and on the MRF theory, an original aspect of
the proposed scheme consists of a methodology to parametrize the eddy structure, to detect
its temporal evolution in the time window of 18 days. The advantage of our proposal is that
the contextual dependence of the segmentation process model is able to deal with the noisy
behavior of the images from different satellites (CSK, R-2, and S-1). The resulting scene char-
acterization is provided by merely binary labeled fields, see Fig. 3(b); this seems a simple out-
come, but a functional product cannot be obtained by conventional segmentation methods. Two
objective correlation measures are used to prove the correspondence between the geophysical
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Fig. 6 AWS Eneide wind field collected over a time period of 18 days.

Fig. 7 Correlation functions between eddy extent and wind speed: (a) the running correlation
coefficient and (b) the Spearman correlation coefficient.
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variables involved. Both ocean and atmospheric dynamics impact the floating ice distribution,
and this introduces discrepancies in the traced eddy contour. The detection of ice fragments
floating in the surrounding environment, being configured by a set of segments, is not very
precise and yields some divergence in the correlation progression, see Fig. 4. A clear limitation
of the correlation measure is that the statistical interpretation is only a “linear” one, whereas a
nonlinear analysis is beyond the scope of this paper. The recursive structure of the MRF algo-
rithm requires a significant amount of processing time: using MATLAB® and computing with an
Intel Pentium® CPU G2020 of 2.9 GHz and 6 GB RAM memory, the elapsed time for a single
scene is about 1150.1 s.

5 Conclusions

Eddies play an important role in the dynamic distribution of heat, mass, and other geophysical
variables, which operate at high latitudes. This paper presents a complex processing scheme
developed to model small-scale eddies generated by atmospheric forcing. First, a nonlinear filter
is applied to a sequence of imagettes extracted from the SAR images; the filter task is the
smoothing of the speckle degradation while preserving primary details. The filtering stage is
complemented by a segmentation stage based on MRF theory. Because of the speckle effect,
the use of both filtering and MRF stages provides a contextual analysis, which improves the
segmentation result.

Two regions of the imagettes are considered for the purposes of this paper: the open sea and the
sea-ice, both regions being delimited as objects, and with the floating ice providing basic infor-
mation for tracing the eddy bounds. The set of sea-ice objects of the binary segmentation is labeled
to remove drifting sea-ice objects from the internal eddy region. Using this criterion, small objects,
both inside and outside the eddy, are rejected, even though the primary interest is to remove those
inside the eddy. In this way, a clear definition of the eddy boundary is obtained.

The use of an active contour algorithm enhances the overall quality of eddy extent detection.
The processing scheme presented in this work, when applied to the set of SAR images of TNB,
produces a database of area variation in the study period. The link between eddy area and wind
field was analyzed by means of the running correlation coefficient function (Rcc) and the
Spearman correlation coefficient, which revealed the soundness of the linear relationship and
the monotone dependence between the two variables.
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