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Abstract. Defoliation induced by the weevil Gonipterus scutellatus is causing significant dam-
age to South Africa’s eucalyptus plantations. Therefore, the ability of remote sensing to detect
and map G. scutellatus defoliation is essential for monitoring the spread of the weevil so that
precautionary measures are set in place. In our study, an integrated approach using image texture
in various processing combinations and an artificial neural network (ANN) were developed to
detect and map G. scutellatus induced vegetation defoliation. A 0.5-m WorldView-2 pan-
sharpened image was used to compute texture parameters from the gray-level occurrence matrix
and gray-level co-occurrence matrix, using optimal moving windows for specific levels of
G. scutellatus induced vegetation defoliation. In order to improve the accuracy of detecting
and mapping G. scutellatus induced vegetation defoliation, a method involving a three-band
texture processing combination was proposed and tested. Using a sequential forward selection
algorithm allowed for the selection of optimal texture combinations, which were subsequently
input into a backpropagation ANN. The results showed an improvement in detecting vegetation
defoliation using single texture bands [R2 ¼ 0.82, root mean square error (RMSE) = 0.95
(1.82% of the mean measured defoliation)] when compared to single spectral reflectance
bands [R2 ¼ 0.60, RMSE = 1.79 (3.43% of the mean measured defoliation)], two-band spectral
reflectance combination model [R2 ¼ 0.74, RMSE = 1.48 (2.83% of the mean measured defo-
liation)], and the three-band spectral reflectance combination model [R2 ¼ 0.80, RMSE = 1.35
(2.59% of the mean measured defoliation)]. Further improvements were obtained using the
two-band texture combination model [R2 ¼ 0.85, RMSE = 1.05 (2.01% of the mean measured
defoliation)] and the most promising result was obtained using the proposed three-band texture
combination model [R2 ¼ 0.90, RMSE = 0.85 (1.63% of the mean measured defoliation)].
Overall, our study highlights the potential of image texture combinations in improving the detec-
tion and mapping of vegetation defoliation. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.13.014513]
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1 Introduction

In South Africa, eucalyptus plantations cover ∼700; 000 ha of the country’s land base and is
considered one of the most productive commercially planted exotic species in the country.1

However, the sustainability of these prolific species is threatened by outbreaks of the weevil
Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae).2,3 The weevil is native to
south-east Australia and has subsequently perpetuated across the globe, with first reports of
establishment in South Africa in 1916.3–5 The weevil is a specialist on the genus Eucalyptus
and is considered an important limiting factor, which may cause a significant loss of productivity
in established eucalyptus plantations.4,6 The effects of repeated aggressive feeding by the weevil
may result in a reduction in eucalyptus growth rates and subsequent tree mortality.7 The problem
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is further augmented as many eucalypts demonstrate little to no resistance to the weevil, which is
of major apprehension to South Africa’s commercial forestry sector.3 Primary management
strategies to control weevil population densities may include either planting of nonsusceptible
species of eucalyptus3,8 or the use of biological control.4,9 The latter was initiated in 1926 when
the egg parasitic wasp Anaphes nitens Siscaro (Hymenoptera: Mymaridae) was first introduced
into South Africa.4,10 However, South Africa’s environmental conditions and the absence of
environmental resistance provide favorable conditions for the weevil to proliferate.11,12

Therefore, measures need to be set in place for incipient detection and monitoring of weevil-
induced vegetation defoliation, as to ensure that appropriate interventions are set in place before
a point of nonrecovery is reached. Although conventional methods of monitoring vegetation
defoliation are widely used, in this regard, they may be expensive, subjective, time consuming,
and spatially restrictive.13–16 On the contrary, remote sensing offers a synoptic view of phenome-
non on the ground, therefore having the potential to adequately detect and map vegetation
defoliation induced by insects and other defoliating agents.14,15,17 The basis for monitoring and
assessing forest health using remote sensing can be achieved by either detecting subtle spectral
changes of foliage13 or foliage reduction.18,19 Previous studies have used vegetation indices to
provide a quantitative framework for detecting and monitoring vegetation defoliation.18,20,21 For
example, Lottering et al.19 used spatially optimized vegetation indices and successfully detected
and mapped vegetation defoliation and leaf area index. However, since defoliation is expressed
in tree crowns and canopies, some studies have argued that when using high spatial resolution
data, image texture would be a more significant source of information.22,23

Image texture is used to determine the spatial orientation of features within high spatial
resolution imagery.24–26 It is a function of local variance and is thus scale dependent.22,27

This method captures the spatial information composed within a remotely sensed scene, making
it possible to identify aspects of forest structure, which may include vegetation defoliation.28,29

Yuan et al.,30 for instance, used image texture to detect sugar maple decline and found that
changes in tree crowns due to shoot dieback resulted in changes in image texture and could
be quantified using linear models. Similarly, Moskal and Franklin22 used image texture analysis
computed from high spatial resolution CASI image data and successfully detected the severity of
aspen defoliation. The current study extends the work of previous studies22,30 by exploring the
capability of image texture combinations in improving the detection of pest induced vegetation
defoliation. Therefore, a three-band image texture processing combination approach was devel-
oped and tested in this study. The premise of this approach is twofold: (1) image texture has the
capability of improving the detection of vegetation defoliation by simplifying the structure of the
canopy and (2) band combinations have previously shown to improve the detection of vegetation
defoliation when compared to the utility of individual bands. This is achieved by reducing back-
ground effects, sun angle effects, sensor angle effects, and atmospheric effects.31,32 In essence,
the three-band image texture processing combination proposed in this study combines these two
unique techniques, thus aiming to improve the detection of vegetation defoliation. In addition,
previous studies have also focused on the relationship between image texture and defoliation
using linear regression models, which assumes that a linear relationship exists between
phenomena.

However, this is not always the case, as phenomena may be more complex and follow a
nonlinear relationship, which can be effectively investigated using multivariate regression tech-
niques. For example, an artificial neural network (ANN) is a multivariate regression technique
that does not make any assumptions about the data.33 This algorithm emulates the functionality
of the biological nervous system, demonstrating predictive capabilities that are not found in
traditional statistical techniques.24,33,34 Many studies support the utility of an ANN in under-
standing complex relationships, as it has the capacity to deal with non-normality, nonlinearity,
and collinearity within a system.24,33,34 Hence, integrating an ANN with image texture combi-
nations computed from a 0.5-m WorldView-2 pan-sharpened image would be effective in
detectingG. scutellatus induced vegetation defoliation. The WorldView-2 pan-sharpened dataset
was selected because of its high spatial resolution, thus providing enhanced image texture infor-
mation for detecting vegetation defoliation.

Although image texture has shown potential in detecting vegetation defoliation in the past,
surprisingly its capabilities have not been fully explored. Therefore, the aim of this study was
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to explore the ability of image texture combinations computed from a 0.5-m WorldView-2
pan-sharpened image for detecting and mapping G. scutellatus induced vegetation defoliation
using an ANN. More specifically, we investigated the performance of (1) image texture in vari-
ous processing combinations, (2) spectral reflectance in various processing combinations, and
finally, (3) image texture combinations versus spectral reflectance combinations in detecting
G. scutellatus induced vegetation defoliation.

2 Methods

2.1 Study Area

The study was conducted in the Sappi Hodgsons Estate (30°59’85”E; 29°19’03”S), near
Greytown in KwaZulu-Natal, South Africa (Fig. 1). This area covers ∼6391 ha of land and
falls under the midlands mistbelt grassland bioregion. The landscape is undulating with an eleva-
tion ranging from 1030 to 1590 m above sea level. The area is characterized by summer rainfall
ranging from 730 to 1280 mm/annum, with summer temperatures ranging from 24°C to the mid-
30s. Winter months are dominated by misty conditions with temperatures ranging from 5°C to
14°C. Apedal and plinthic soil forms are predominantly found in this region and are derived
primarily from the Ecca group. The three principal genera dominated in this area are pine
(P. patula, P. echinata), eucalyptus (E. grandis, E. dunnii), and black wattle (A. mearnsii).
Frequency of G. scutellatus outbreaks commonly occur in this area during the South African
spring and summer months.

2.2 Imagery

A WorldView-2 pan-sharpened image was obtained on September 20, 2012 under cloudless
conditions. Figure 2 displays the characteristics35 of each WorldView-2 pan-sharpened band
used in this study.

Fig. 1 Sappi Hodgsons Estate in KwaZulu-Natal, South Africa. Compartments are displayed
using the WorldView-2 red band.
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The image was atmospherically calibrated to the top-of-atmosphere reflectance using fast
line-of-sight atmospheric analysis of spectral hypercube radiative transfer algorithm in ENVI
4.736 and was georectified and orthorectified using 25 well-distributed ground control points.
Following georectification, a root mean square error (RMSE) of less than one pixel size (0.5 m)
was obtained. The image was then projected to Universal Transverse Mercator projection and
the World Geodetic System 84 datum.

2.3 Field Data Collection

Field data were collected between September 24, 2012 to October 5, 2012, which commenced
4 days after the acquisition of the WorldView-2 pan-sharpened image and coincided with
G. scutellatus induced vegetation defoliation being at a peak. The Hawths tool in ArcGIS
10.3 was used to randomly generate 30 × 30 m plots over the study area using an existing
WorldView-2 image. Prior field surveys that were conducted within the plantation showed
that the 30 × 30 m plots were adequate for detecting levels of vegetation defoliation induced
by the weevil. These plots were at least 15 m away from other features, such as roads, and
were located in field using a handheld Trimble Geo-Explorer with submeter accuracy. Once
the area of interest was located, a 30 × 30 m plot was created in field and the percentage
level of defoliation was established per plot. All trees within the 30 × 30 m plot were inspected
for G. scutellatus induced vegetation defoliation and was validated by an entomologist from
Sappi forests. Defoliation levels were calculated as a percentage of defoliated trees to the
total number of trees within the 30 × 30 m plot. These estimates were then grouped into
four major defoliation classes regularly used in forest inventories: 25% and less defoliation
(low), 26% to 50% defoliation (medium), 51% to 75% defoliation (high), and greater than
75% defoliation (severe). Training areas were created using these 30 × 30 m plots overlaid

Band Range (nm) Resolution (m) Description Image
Coastal blue 400-450 0.5 Radiation in this region is absorbed by 

chlorophyll in healthy vegetation, thus 
aiding in vegetation analysis. 

Blue 450-510 0.5 Chlorophyll absorbs radiation in this 
region, playing an essential role in 
analysing vegetation.

Green 510-580 0.5 Measures vegetation vigour by focusing on 
peak reflectance in this region.

Yellow 585-625 0.5 This region is important for classifying 
features on the earth’s surface. 

Red 630-690 0.5 Vegetation is effectively discriminated in 
this region. 

Red edge 705-745 0.5 This region is effective in measuring 
vegetation health and vegetation
classification. 

Near-IR1 770-895 0.5 This region assists in vegetation 
discrimination. 

Near-IR2 860-1040 0.5 This region allows for broader vegetation
analysis.

Fig. 2 Characteristics of the WorldView-2 pan-sharpened spectral bands.

Lottering et al.: Detecting and mapping Gonipterus scutellatus induced vegetation defoliation. . .

Journal of Applied Remote Sensing 014513-4 Jan–Mar 2019 • Vol. 13(1)



onto the texture and spectral images. This resulted in a total of 320 sample plots showing differ-
ent levels of percentage defoliation. A summary of the field data collected is presented in Table 1.

2.4 Image Texture

Image texture is a function of local variance within an image and is dependent on the properties
of a neighborhood of pixels.24,37 It is a useful approach for detecting vegetation defoliation,
because vegetation structural changes induced by defoliation result in image texture
variation.22 In addition, several studies have illustrated the superiority of image texture as a
source of information, particularly with high spatial resolution imagery.24,26 These are divided
into two categories, namely the gray-level occurrence matrix (GLOM) and the gray-level
co-occurrence matrix (GLCM). GLOM ignores the spatial relationship between pixels and is
computed from the histogram of pixel intensities within a window.38 Figure 3 provides
a brief description of GLOM image texture parameters.

Table 1 Summary of collected field data.

Class 1% to 25% 26% to 50% 51% to 75% >75%

No. of Plots 65 88 89 78

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

Defoliation (%) 15.58 6.73 36.81 6.95 60.55 6.68 81.32 6.33

Fig. 3 First-order (GLOM) image texture parameters.38,39
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On the other hand, GLCM determines the possibility of all pairwise combinations of gray-
levels within a window.24,25 When determining the GLCM, a set of gray-level co-occurrence
probabilities are stored, and statistics are then applied to the matrix to generate image texture
parameters.40 Figure 4 provides a brief description of GLCM image texture parameters.

In this study, the two categories of image texture were selected to determine their potential in
detecting weevil-induced vegetation defoliation and were computed from a 0.5-m WorldView-2
pan-sharpened image with a co-occurrence shift of x ¼ 1, y ¼ 1 and θ ¼ 45 deg. The angle has
minimal influence on the coefficient of determination41 and therefore using this angle exclusively
was deemed adequate to calculate image texture parameters. The window sizes used for each
image texture parameter computed was based on a study conducted by Lottering and Mutanga.2

They used the minimal variance to determine optimal spatial resolutions for detecting levels of

Fig. 4 Second-order (GLCM) image texture parameters.30,39,41–43
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G. scutellatus induced vegetation defoliation. The study concluded that an optimal spatial res-
olution for low and medium levels of defoliation was established at 2.5 m (5 × 5), and for high
and severe levels of defoliation, an optimal spatial resolution was established at 3.5 m (7 × 7) and
4.5 m (9 × 9), respectively. Therefore, in this study, we computed image texture parameters using
moving window sizes in accordance with the optimal spatial resolutions at which levels of defo-
liation were best represented. The mean values of each of the samples were then extracted in
ArcGIS 10.3 and corresponded with all 320 sample plots. These image texture parameters were
computed using ENVI 4.7 software.

2.5 Processing the WorldView-2 Pan-Sharpened Image for Modeling

2.5.1 WorldView-2 pan-sharpened image was processed in two steps

• Step 1: Single spectral bands, two-band spectral combination, and three-band spectral
combination

This step involves testing the spectral reflectance of single bands and band combi-
nations of the WorldView-2 pan-sharpened image in detecting weevil induced vegetation
defoliation. Using the optimal spatial resolutions established by Lottering and Mutanga,2

the 0.5-mWorldView-2 pan-sharpened image was resampled accordingly. These spectral
processing combinations were then formulated in the following manner:

1) The spectral reflectance of the 8 WorldView-2 pan-sharpened bands were used in
an ANN.

2) All possible combinations of any 2 spectral reflectance bands were used in
an ANN. These combinations were derived using Eq. (1):

EQ-TARGET;temp:intralink-;e001;116;441

B1 − B2

B1þ B2
(1)

where B1 and B2 are spectral reflectance bands or image texture parameters.
3) All possible combinations of any three spectral reflectance bands were used in

an ANN. These combinations were derived using Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;362

B1 − B2

B1þ B3
(2)

where B1, B2, and B3 are spectral reflectance bands or image texture parameters.

• Step 2: Single image texture bands, two-band image texture combination, and three-band
image texture combination

Thirteen image texture parameters were computed from each of the eight
WorldView-2 pan-sharpened bands. Window sizes were selected based on the optimal
spatial resolution established by Lottering and Mutanga.2 These image texture param-
eters were then formulated in the following manner:

1) Single image texture bands were computed from each of the eight WorldView-2
pan-sharpened bands and were used in an ANN.

2) All possible combinations of any two image texture parameters were used in
an ANN. These combinations were derived using Eq. (1).

3) All possible combinations of any three image texture parameters were used in
an ANN. These combinations were derived using Eq. (2).

2.6 Artificial Neural Network Analysis

This study used an ANN to determine the relationship between spectral reflectance and image
texture parameters with G. scutellatus induced vegetation defoliation. Figure 5 illustrates
the structure of an ANN.

Each model was trained using a backpropagation algorithm with one hidden layer.24,34

This supervised approach makes use of the gradient descent technique that aims to decrease
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the prediction of error. The algorithm functions in a forward and backward phase. The forward
phase introduces the spectral or image texture parameters to the network. The model is sub-
sequently run with initial random weights that generate an output for each of the inputs.44

In the hidden node, the product of the input and initial weight is summed up to produce a
Zj value for the j 0th layer.45 Equation (3) illustrates this as follows:

EQ-TARGET;temp:intralink-;e003;116;361Zj ¼
X

J

Wji ×Oi: (3)

A neural network having three layers namely; i; j; k, and the k layer being the output, Sk can
be calculated as follows:

EQ-TARGET;temp:intralink-;e004;116;293Sk ¼
X

j

WkjZj; (4)

where Sk is the value from the hidden layer j and Wkj is the weight value.
An aspect on nonlinearity is added to the network when the Zj passes through a sigmoidal

activation function.45 The output is defined as follows:

EQ-TARGET;temp:intralink-;e005;116;214Oj ¼
1

1þ e−ðZjþθÞ∕θ0 ; (5)

where θ is a threshold and θ0 is a constant.
Once the output values for each node are calculated, the forward phase stops. This is followed

by the backward phase, where changes in the predicted and observed RMSE are directed back to
the network to decrease overall error. This phase reoccurs until the error is at a minimum.

In the current study, the dataset (320 plots) was randomly divided into test (96 plots) and
training (224 plots) data, using a repeated hold out sample with 100 iterations. The optimal
number of nodes was established by manually changing the number of nodes in the hidden
layer. Training epochs were set at 5000, this was done to avoid over training the model.24

The learning rate and momentum of the model were set at 0.01 and 0.30, respectively.

Input Layer       Hidden Layer       Output

(I) (J)   (K)

Fig. 5 Representation of a feedforward neural network, where Oi represents the layer comprising
the spectral reflectance or texture parameters, Oj represents the hidden layer to which Oi and Ok

are connected, Ok represents the output layer, Wji and Wkj represent the weight value.34
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2.7 Accuracy Assessment

Model performance of the spectral and image texture models was based on an independent test
(96 plots) dataset. Each model’s performance was tested using the coefficient of determination
(R2), RMSE, and %RMSE between observed and predicted levels of G. scutellatus induced
vegetation defoliation. Models with the highest R2, lowest RMSE, and %RMSE were retained
for detecting vegetation defoliation. Figure 6 shows a flowchart of the methodology undertaken
to achieve the objectives of this study.

3 Results

Figure 7 illustrates the difference in % defoliation over the study area. From a total of 320 plots,
20.31% were scored low (1% to 25%), 27.50% were scored medium (26% to 50%), 27.81%
were scored high (51% to 75%), and 24.38% were scored severe (>75%) for visual estimates of
percentage defoliation.

3.1 Relationship Between Spectral Reflectance and Image Texture Parameters
with Weevil Induced Vegetation Defoliation

The relationship between each parameter and defoliation was determined using a Pearson’s cor-
relation test. Image texture and spectral parameters used in model development subsequently
underwent a sequential forward selection. This allowed for the selection of the best spectral

WorldView-2 Imagery

Image pre-processing

Artificial Neural Network

Texture Ratios Spectral Ratios

Validation

Accuracy 
Assessment

Map depicting the spatial distribution of weevil induced vegetation defoliation

Fig. 6 Flowchart showing the research methodology.
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reflectance and image texture parameters for the development of models to detect weevil-
induced vegetation defoliation.

3.2 Selected Spectral Reflectance and Image Texture Parameters for
the Artifical Neural Network

Since the three-band image texture combination and three-band spectral reflectance combination
models showed the highest correlation with vegetation defoliation in their respective groups, we
chose to illustrate these two models in Table 2. Table 2 also shows the input variables selected by
the sequential forward selection algorithm, which were subsequently used in the ANN for model
development. In addition, the Pearson’s correlation test revealed that all selected parameters from
each model were highly correlated with weevil-induced vegetation defoliation, however higher
correlations were established using the three-band image texture combination model. It can
also be noted that image texture parameters selected for development of the three-band image
texture combination model were predominantly gray-level co-occurrence image texture parameters
computed primarily from the red, red edge, near-infrared 1, and near-infrared 2 bands.

3.3 Artificial Neural Networks

Using an ANN, we detectedG. scutellatus induced vegetation defoliation using spectral and image
texture parameters computed from a 0.5-m WorldView-2 pan-sharpened image. We achieved this
by changing the number of nodes in the hidden layer. A list of parameters used to train each model
are shown in Tables 3 and 4 for spectral and image texture models, respectively.

Fig. 7 Histogram illustrating defoliation levels within the study area.

Table 2 Significant (p < 0.01) combinations of spectral and image texture variables for detecting
defoliation.

Variable Three-band spectral reflectance Three-band texture parameters

Defoliation Spectral band r Texture r

ðREDÞ−ðNIR1Þ
ðREDÞþðREDEDGEÞ −0.67 ðB8;E;9;CÞ−ðB5;H;5;CÞ

ðB8;E;9;CÞþðB6;Cr;5;CÞ −0.70

ðNIR2Þ−ðREDÞ
ðNIR2ÞþðREDEDGEÞ 0.69 ðB6;H;7;CÞ−ðB7;S;5;CÞ

ðB6;H;7;CÞþðB8;S;5;CÞ −0.74

ðNIR1Þ−ðREDEDGEÞ
ðNIR1ÞþðREDÞ −0.71 ðB7;H;5;CÞ−ðB8;Cr;9;CÞ

ðB7;H;5;CÞþðB5;H;7;CÞ 0.73

ðREDEDGEÞ−ðREDÞ
ðREDEDGEÞþðNIR2Þ 0.72 ðB5;H;5;CÞ−ðB8;E;9;Þ

ðB5;H;5;CÞþðB7;Cr;9;CÞ −0.74

Lottering et al.: Detecting and mapping Gonipterus scutellatus induced vegetation defoliation. . .

Journal of Applied Remote Sensing 014513-10 Jan–Mar 2019 • Vol. 13(1)



3.4 Training, Testing and Applying the Artificial Neural Network to Detect Levels
Vegetation Defoliation

Each of the models were trained using the parameters displayed in Tables 3 and 4. Using random
initial weights, each model was run a maximum of five times.24,44 Weight configurations that
yielded the highest R2, lowest RMSE, and %RMSE between predicted and measured defoliation
based on an independent test dataset were reserved for detecting vegetation defoliation.

3.5 Performance of Spectral and Image Texture ANN Models

Table 5 shows that the three-band spectral reflectance combination model [R2 ¼ 0.80 and RMSE
= 1.35 (2.59% of the mean measured defoliation)] outperformed both the two-band spectral
reflectance combination [R2 ¼ 0.74 and RMSE = 1.48 (2.83% of the mean measured defolia-
tion)] and single spectral reflectance band [R2 ¼ 0.60 and RMSE = 1.79 (3.43% of the mean
measured defoliation)] models. This was due to a higher R2, lower RMSE, and %RMSE value
based on an independent test dataset.

While ANN models using the single image texture bands [R2 ¼ 0.82 and RMSE = 0.95
(1.82% of the mean measured defoliation)] and two-band image texture combinations
[R2 ¼ 0.85 and RMSE = 1.05 (2.01% of the mean measured defoliation)] yielded high R2 values
in detecting vegetation defoliation, Table 6 shows the ANN model using the three-band image
texture combination [R2 ¼ 0.90 and RMSE = 0.85 (1.63% of the mean measured defoliation)]
yielded the highest R2, lowest RMSE, and %RMSE value based on an independent test
dataset.

Table 3 Best trained ANN parameters for detecting levels of defoliation using spectral reflectance
data.

Model Input Hidden Profile

Single spectral bands 5 4 MLP 5:5-4-1:1

Two-band spectral combination 5 4 MLP 5:5-4-1:1

Three-band spectral combination 4 3 MLP 4:4-3-1:1

Table 4 Best trained ANN parameters for detecting levels of defoliation using image texture.

Model Input Hidden Profile

Single texture bands 5 3 MLP 5:5-3-1:1

Two-band texture combination 4 3 MLP 4:4-3-1:1

Three-band texture combination 4 2 MLP 4:4-2-1:1

Table 5 Comparison between spectral reflectance predictive models (n ¼ 320).

Variable Single spectral bands
Two-band spectral

model
Three-band spectral

model

Defoliation Data R2 RMSE R2 RMSE R2 RMSE

Test 0.60 1.79 (3.43%) 0.74 1.48 (2.83%) 0.80 1.35 (2.59%)

Train 0.58 1.32 (2.52%) 0.72 0.93 (1.78%) 0.79 0.89 (1.71%)

Note: R2: All significant at p < 0.01
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3.6 Testing and Applying the ANN to Detect Weevil Defoliation Using
Local Binary Patterns

Local binary patterns (LBPs) are an alternate texture analysis proposed by Ojala et al.46 LBPs
were computed from the WorldView-2 pan-sharpened image using the same moving window
sizes used to compute the image texture and combination models. Similarly, the resulting LBPs
were also used to develop models using a backpropagation ANN to detect levels of vegetation
defoliation. The model that yielded the highest R2, lowest RMSE, and %RMSE was retained and
used for detecting vegetation defoliation induced by the weevil. Table 7 shows the results
obtained from the LBP model.

3.7 Comparing the Performance of Image Texture Models and the LBP Model

Tables 6 and 7 show the results of the image texture models and LBP model, respectively. Based
on independent test datasets, all image texture models yielded higher R2 values for detecting
defoliation induced by the weevil when compared to the LBP model. In addition, all image
texture models also yielded lower RMSE and %RMSE results when compared to the LBP
model, based on independent test datasets.

3.8 Mapping the Distribution of G. Scutellatus Vegetation Defoliation Using
an ANN

Although all three image texture models yielded high correlation coefficients, a predictive map
showing the distribution of defoliation was developed using the best trained three-band image
texture combination model. This was due to the superior performance of this model in detecting
G. scutellatus induced vegetation defoliation over all tested models. The predicted map was
developed using R statistical software. Figure 8 shows the distribution of levels of G. scutellatus
induced vegetation defoliation over the study area.

3.9 Sensitivity Analysis

Since the three-band image texture combination model outperformed all the models in detecting
vegetation defoliation, we tested the importance of the selected variables in this model.
A sensitivity analysis was run to determine which variables played the most prominent role

Table 6 Comparison between image texture predictive models (n ¼ 320).

Variable
Single texture
parameters

Two-band texture
model

Three-band texture
model

Defoliation Data R2 RMSE R2 RMSE R2 RMSE

Test 0.82 0.95 (1.82%) 0.85 1.05 (2.01%) 0.90 0.85 (1.63%)

Train 0.81 0.83 (1.59%) 0.86 0.70 (1.34%) 0.88 0.61 (1.17%)

Note: R2: All significant at p < 0.01

Table 7 Results obtained using the LBP model (n ¼ 320).

Variable LBP model

Defoliation R2 RMSE

0.78 1.11 (2.13%)

0.77 1.08 (2.07%)

Note: R2: All significant at p < 0.01
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in developing the three-band image texture combination model. Input variables with higher
ratios show more importance than lower ratio variables in model development. Table 8 shows
a sensitivity analysis for the three-band image texture combination model.

Values within the ratio column are calculated for each image texture combination as if the
variable is absent during network execution. The error obtained in the absence of the variable is
divided by the error obtained when the variable is present. An index with higher ratios would
illustrate a reduction in network performance if removed from the network.

4 Discussion

4.1 Relationship Between Image Texture Combinations and
Vegetation Defoliation

Although several studies have reported on the ability of image texture in detecting vegetation
defoliation,22,30 the current study, however, was the first to report on the ability of image

Fig. 8 Predictive map showing the distribution of G. scutellatus over the entire study area.

Table 8 Sensitivity analysis of the three-band image texture combination model used in the ANN.

Variable Rank Image texture combination Ratio

Defoliation 1 ðB6;H;7;CÞ−ðB7;S;5;CÞ
ðB6;H;7;CÞþðB8;S;5;CÞ 1.94

2 ðB7;H;5;CÞ−ðB8;Cr;9;CÞ
ðB7;H;5;CÞþðB5;H;7;CÞ 1.25

3 ðB5;H;5;CÞ−ðB8;E;9;CÞ
ðB5;H;5;CÞþðB7;Cr;9;CÞ 1.09

4 ðB8;E;9;CÞ−ðB5;H;5;CÞ
ðB8;E;9;CÞþðB6;Cr;5;CÞ 1.05

Note: B5, B6, B7, B8: red, red edge, near-IR1, near-IR2; H: homogeneity; E: entropy; Cr: correlation; S: second
moment; C: co-occurrence; 5, 7, 9: 5 × 5, 7 × 7, 9 × 9
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texture combinations in detecting vegetation defoliation. This study introduced a three-band
image texture combination approach in an attempt to improve the detection of vegetation
defoliation. Overall, the results in this study showed that image texture combinations
have the capacity to adequately detect and map vegetation defoliation, outperforming
traditional spectral reflectance data. Among the seven models tested, the three-band image
texture combination showed the highest overall accuracy [R2 ¼ 0.90 and RMSE = 0.85
(1.63% of the mean measured defoliation)] in detecting vegetation defoliation. Conversely,
using single spectral reflectance bands produced the lowest overall accuracy [R2 ¼ 0.60

and RMSE = 1.79 (3.43% of the mean measured defoliation)]. This was followed by the
two-band spectral reflectance combination model, which produced a somewhat better result
[R2 ¼ 0.74 and RMSE = 1.48 (2.83% of the mean measured defoliation)]. However, the three-
band spectral reflectance combination produced the highest overall accuracy of the three
spectral reflectance models [R2 ¼ 0.80 and RMSE = 1.35 (2.59% of the mean measured
defoliation)].

The detection of G. scutellatus induced vegetation defoliation improved immensely using
image texture. This result is consistent with the findings of many studies that reported improved
performance of image texture over spectral reflectance data.22,24,37 For example, Nichol and
Sarker37 found that image texture outperformed spectral reflectance data in estimating vegetation
biomass. In the current study, this improvement was noted in all three image texture models. The
results obtained from each image texture model were very promising with the single image tex-
ture parameter model having an R2 of 0.82 and an RMSE of 0.95 (1.82% of the mean measured
defoliation), which improved further using the two-band image texture combination model
[R2 ¼ 0.85 and RMSE = 1.05 (2.01% of the mean measured defoliation)]. However, the highest
agreement was achieved using the three-band image texture combination model [R2 ¼ 0.90 and
RMSE = 0.85 (1.63% of the mean measured defoliation)], a result that has not been previously
reported in literature for detecting levels of pest-induced vegetation defoliation. This could be
due to the high spatial resolution of the WorldView-2 pan-sharpened image. For instance, several
studies have emphasized the dependence of image texture on the spatial resolution of remotely
sensed data.22,24,26,27 In addition, the improved accuracy of the three-band image texture combi-
nation model could have also been attributed to the fact that the moving windows used to com-
pute each image texture parameter matched the optimal spatial resolution at which each level of
weevil-induced vegetation defoliation was best represented. Lottering and Mutanga,2 for exam-
ple, found that optimizing the spatial resolution of remotely sensed data improved the detection
of vegetation defoliation. This result was subsequently compared to the result obtained from the
LBP model, whose performance was not as significant when compared to the image texture and
texture combination models in detecting vegetation defoliation induced by the weevil. Similarly,
Kaya et al.47 also found that gray-level co-occurrence image texture outperformed the LBPs in
evaluating image texture features.

Moreover, it was also noted that image texture parameters selected for model development
were predominately co-occurrence texture parameters when compared to the occurrence texture
parameters. According to Rao et al.,48 co-occurrence texture parameters are the most applicable
for remote sensing of vegetation. This was echoed by previous studies that focused on forest
structure and image texture.24,30,49 For example, Yuan et al30 found that co-occurrence texture
parameters were better at detecting sugar maple decline when compared to occurrence texture
parameters. In another study, Moskal and Franklin22 successfully detected aspen defoliation
using homogeneity, which is a co-occurrence texture parameter. The sensitivity analysis in
our study showed that homogeneity appeared in most processing combinations, thus reaffirming
the significance of co-occurrence texture parameters in detecting vegetation defoliation.
Furthermore, image texture parameters computed from the red, red edge, near-infrared 1,
and near-infrared 2 bands of the WorldView-2 pan-sharpened image were predominately
selected for developing the three-band image texture combination model. Similarly, structurally
relevant information found in the red, red edge, and NIR spectral ranges have also confirmed the
results of other studies focusing on forest structure, for example, Xu et al.,50 Ingram et al.,33 Cho
et al.,51 and Gebreslasie et al.52 All three moving windows seemed to play an equal role in the
development of the three-band image texture combination model, which was probably due to the
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moving window sizes corresponding with the optimal spatial resolution best representing
specific levels of weevil-induced vegetation defoliation.

4.2 Spatial Distribution of Defoliation Levels Over the Study Area

The results have shown that the three-band image texture combination model has the ability to
effectively detect and map levels of vegetation defoliation induced by the weevil G. scutellatus.
From the predictive map, it can be seen that in all compartments, there was some degree of
defoliation. However, higher and severe levels of defoliation were more prominent
toward the southern parts of the map. The rational explanation behind this could be due
to preference shown by the weevil. Several studies have highlighted the selective nature of
G. scutellatus, whereby certain eucalyptus species are more preferred than others.53–56

For example, Fuentes et al.56 found that Eucalyptus camaldulensis was more susceptible to
G. scutellatus defoliation than Eucalyptus robusta or Eucalyptus globulus. In our case,
the eucalyptus species found toward the southern parts of the predictive map were
Eucalyptus grandis and toward the northern parts were Eucalyptus dunni. Therefore, the
more preferred Eucalyptus grandis may have been initially consumed followed by the less
preferred Eucalyptus dunni.

To summarize, all image texture models produced very promising results, however, the three-
band image texture combination model was the more superior of the models. This was primarily
due to the high spatial resolution of the WorldView-2 pan-sharpened image and the unique three-
band image texture processing combination technique, which combines the advantages of both
image texture and band combinations. The methodology conducted in this study could be applied
to other areas, provided the remotely sensed image is optimized to specific spatial resolutions at
which levels of defoliation are best represented. Furthermore, it is also essential to use high spatial
resolution data for improved detection outcomes, as image texture is scale dependent.22,24,27

5 Conclusion

Although the potential of image texture has been previously demonstrated, no study has
investigated the full potential of image texture in detecting and mapping G. scutellatus induced
vegetation defoliation. This study has therefore shown an integrated approach in detecting
weevil-induced vegetation defoliation using image texture combinations and an ANN. This
study has revealed that:

• the three-band image texture combination model showed the highest overall accuracy in
detecting vegetation defoliation, when compared to the two-band image texture combina-
tion model and the single-band image texture model,

• the three-band spectral reflectance combination model showed the highest overall accuracy
in detecting vegetation defoliation, when compared to the two-band spectral reflectance
combination model and the single-band spectral reflectance model,

• and finally, all image texture models outperformed all spectral reflectance models in
detecting G. scutellatus induced vegetation defoliation.

Overall, this study was the first attempt to detect vegetation defoliation using image texture
combinations and an ANN. Detecting vegetation defoliation with high spatial resolution imagery
and image texture combinations can be a reliable practical alternative to conventional field sur-
veys. The three-band image texture combination proposed in this study is an objective, quanti-
tative, and a cost effective means of detecting vegetation defoliation. The result is important in
improving the overall accuracy of detecting and mapping pest-induced vegetation defoliation.
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