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Abstract. Monitoring grassland biomass throughout the growing season is of key importance in
sustainable, site-specific management decisions. Precision agriculture applications can support
these decisions. However, precision agriculture relies on timely and accurate information on
plant parameters with a high spatial and temporal resolution. The use of structural and spectral
features derived from unmanned aerial vehicle (UAV)-based image data from low-cost sensors is
a promising nondestructive approach to assess plant traits such as above-ground biomass
or plant height. Therefore, the main objectives were (1) to evaluate the potential of low-cost
UAV-based canopy surface models to monitor sward height as an indicator of grassland bio-
mass, (2) to evaluate the potential of vegetation indices from low-cost UAV-based red-green-
blue (RGB) digital image data, and (3) to compare the mentioned methods with established
methods for biomass monitoring such as rising plate meters and spectroradiometer-based
narrowband vegetation indices over the growing season in 2017, including three cuts. We
compared the accuracy of each single UAV-based height feature and vegetation index using
a combined multivariate approach to estimate fresh and dry biomass. The heterogeneous
sward structure with high spatiotemporal variability led to varying performance in biomass
estimation depending on the growths (time between two cuts) and choice of predictor variable.
The results showed that biomass prediction by height features provided moderate-to-good
results (cross-validation R2 ¼ 0.57 to 0.73 for dry biomass and 0.43 to 0.79 for fresh biomass),
but reference measurements based on rising plate meters were more robust when estimating
biomass. The spectral features (RGB-based vegetation indices and spectroradiometer-
based vegetation indices) yielded varying accuracy and suitability for biomass prediction.
Despite the variability, our findings indicate a promising approach for grassland biomass
monitoring. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.034525]
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1 Introduction

Grasslands cover about 40% of the earth’s terrestrial surface and thereby perform significant
ecosystem functions, such as carbon sequestration,1 and so are economically important.2 Awide
range of grasslands, such as intensive and extensive pastures and hay and silage meadows, are
the basis of the world’s meat and milk production and of biofuel production and fibers.3

Of key importance in understanding the high spatio-temporal dynamics of cultivated and natural
grasslands and adjusting management decisions is the monitoring of quantity and quality of
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above-ground biomass.4 Above-ground grass biomass is strongly correlated to canopy height.5–8

Canopy height is, thus, an important parameter in management decisions related to grasslands
such as grazing rotation or harvesting time.8–10 Furthermore, precision agriculture applications,
such as site-specific fertilizer applications, rely on plant parameter data with a high spatial and
temporal resolution.4,10 While traditional destructive field measurement techniques (e.g., clip-
ping and weighing) are widely applied in daily farming practice, they are time-consuming, labor-
intensive, and limited in characterizing the spatial variability of sward characteristics, an indi-
cator of grassland biomass.8,11 Since the 1960s, a range of commercially adapted applications
have been developed to nondestructively measure grassland biomass. The simplest forms of
handheld devices are pasture rulers (or sward sticks), which measure the uncompressed sward
height. Rising plate or disk meters (RPMs) measure the compressed sward height by integrating
sward height and density over a defined area using a weighted disk.9,12 Several studies have
proven that RPM-based compressed sward height is also a robust predictor for grassland
biomass.5,8,13

With technological development in recent decades, these devices have become more sophis-
ticated. Devices such as the GrassHopper (TrueNorth Technologies, Shannon, Ireland) or
GrassOmeter (Monford AG Systems Ltd., Dublin, Ireland) utilize ultrasonic distance sensors
that can be mounted on a stick or boot. In addition to handheld devices, sensors such as
the Pasture Meter (C-Dax Agricultural Solutions, Palmerston North, New Zealand) or the
Pasture Reader (Naroaka Enterprises, Narracan, Australia) are mounted at the rear or front
of a vehicle to measure plant height using a tunnel-like sensor equipped with an optical array
or an ultrasonic measurement device, respectively. In addition to systems providing structural
measures of the sward, biomass can also be assessed using optical sensing systems in the visible
to near-infrared spectral region, such as the Yara N-Sensor (Yara ASA, Oslo, Norway) or the
GreenSeeker (Trimble Inc., Sunnyvale, California, USA), both handheld or tractor-mounted.
These sensors allow direct data logging and transfer and are linked with global navigation
satellite systems to create yield maps.

Those sensing systems provide good estimates of sward height or biomass. However, some
challenges still remain for precision grassland management or large-scale grassland ecosystem
monitoring: (1) limited spatial coverage, especially for handheld devices, and therefore
limitations in characterizing within-field spatial variability of the sward, (2) necessity for heavy
technical equipment, (3) limited access to the field due to grazing animals or protected species,
and, for the vehicle-mounted sensors, potential disturbances at higher frequency for repeated
measurements, and finally (4) limitations of applicability depending on field conditions (e.g.,
slope and soil moisture).6

Remote sensing methods offer a potential for rapid and automated measurements
of plant parameters, such as biomass, nitrogen or chlorophyll content, in high spatial and
temporal resolution on a variety of spatial scales, especially for agricultural applications.
These methods include digital imaging (hyperspectral, multispectral, RGB, radar), photogram-
metry, laser scanning, and combinations of various sensors on different platforms.14,15

Numerous studies have investigated using satellite remote sensing to estimate plant parame-
ters. They derived crop biomass from spectral information of canopy reflectance.14–19

However, most satellite systems with high spatial resolution (< 5 m) are operated commer-
cially, and thus the costs of image acquisition for short revisit times can become a constraining
factor.20

The rapid development of sensor and platform technology, especially in the field of
unmanned aerial vehicles (UAVs), and of small high-resolution camera systems (standard
RGB, multispectral, or hyperspectral) has opened up applications that support tasks in exper-
imental fields and large farm areas, especially tasks related to precision grassland management
and ecosystem monitoring.9,21 In addition, the use of these technologies has been accelerated
by a rapid development of user-friendly computer programs for three-dimensional scene
reconstruction from aerial imagery by Structure-from-Motion (SfM) and Multi-View-
Stereopsis (MVS) algorithms.22 Especially the flexible application of UAVs has benefitted
agricultural monitoring approaches with high spatial and temporal resolution and multiple
sensors.23

Lussem et al.: Estimating biomass in temperate grassland with high resolution canopy. . .

Journal of Applied Remote Sensing 034525-2 Jul–Sep 2019 • Vol. 13(3)



In recent years, structural plant parameters, such as plant height, have become the focus
of UAV-based remote sensing approaches for crop monitoring. Plant height derived from
multitemporal canopy surface models (CSMs) has been studied as a robust estimator of
biomass.24–28 In addition, crop biomass has been estimated from spectral information from
UAV-based standard RGB and multispectral or hyperspectral cameras.29–34 Furthermore, some
studies have investigated combining structural and spectral features from ground-based or
UAV-based sensors to estimate crop parameters.7,24,35–38

Those approaches have mainly been adopted to monitor arable crops, where spatial hetero-
geneity is often lower than in grasslands,10 which typically has a high spatio-temporal hetero-
geneity as a result of the considerably different floristic compositions and the co-occurrence of
different phenological stages. This heterogeneity poses challenges in remote sensing-based esti-
mation of biomass quantity and quality.39 Some studies have faced these challenges by deploying
ground-based measurements using ultrasonic sensors,39,40 light detection and ranging,41,42 or a
combination of structural and spectral features.7,36,39,43,44 Furthermore, a few studies have been
published on deploying structural features such as height or volume derived from UAV-based
camera systems for grassland height or biomass estimation.6,28,36,45–48 However, to our knowl-
edge, no study has utilized low-cost UAV-system-based sward height and vegetation indices
(VIs) to estimate grassland biomass for at least one entire growing season with three consecutive
growths in mid-latitude Europe.

Therefore, the main objectives of the present study are (1) to evaluate the potential of
low-cost UAV-based CSMs to monitor sward height as an indicator of biomass, (2) to evaluate
the potential of VIs from low-cost UAV-based RGB digital image data, and (3) to compare those
methods with established methods for biomass monitoring such as RPMs and spectroradiometer-
based narrowband VIs.

2 Data and Methods

2.1 Study Site

The study was conducted in 2017 on an experimental grassland site in Ersdorf (N 50°34′56.4″,
E 6°59′21.1″) on the Campus Klein-Altendorf research facility of the Rheinische Friedrich
Wilhelms University Bonn, Germany. The site is about 320 m above mean sea level and
has a southeast exposition. The experimental site was established in March 2014 as a nitrogen
fertilizer gradient experiment to develop a high range in biomass and plant height of perennial
ryegrass (Lolium perenne). Further species are also present such as foxtail grass (Alopecurus
sp.), timothy-grass (Phleum pratense) and clover (Trifolium sp.), and to a small amount
dandelion (Taraxum officinale) and cocksfoot (Ranunculus sp.). The vegetation type was
identified as a typical Lolio-Cynosuretum. The percentage contribution of species was limited
so that dominance of species did not change significantly and the vegetation type remained
the same.

The experimental setup comprised three growths with four cuts (including one equaliza-
tion cut in early March) within one year, and the plots were set up in six fertilizer levels with
three replicates, resulting in 162 plots of 1.5 × 3 m gross area (see Fig. 1). The plots were
separated by 20-cm-wide border strips treated with herbicide. Calcium ammonium nitrate
fertilizer (CaH4N4O9, 27% N) was applied at the beginning of each growth. Thus, six fertilizer
levels were established from 0 to 500 kgN ha−1 in increments of 100 kgNha−1. Unfortunately,
the, at-times, high activity of moles and the common vole disturbed parts of the sward
significantly in several plots of replicate 1 (N1, N2, N5, N6) and replicate 2 (N4) (see
Figs. 1 and 2).

The soil type was classified as a stagnosol (soil textural classes: silty clay loam/clay loam/
clay). The annual precipitation in 2017 was 598.5 mm and the mean annual temperature was
10.8°C. Figure 3 displays the monthly mean precipitation and temperature for 2017 along with
the long-term monthly means (1956 to 2015). April, May, and June of 2017 were hotter and
dryer than the long-term averages.
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Table 1 lists all sampling dates for the growing season in 2017. For each growth, three
sampling dates were scheduled. Data collection included UAV campaigns, spectroradiometer
measurements of canopy reflectance, and RPM measurements of compressed sward height and
destructive biomass sampling.
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Fig. 2 Close-up view (a) of swards with bent stalks due to vigorous growth in plots of replicate 2
treatment N5 (orthomosaic from August 22, 2017) and (b) of plots in replicate 1 with high rodent
activity (orthomosaic from April 26, 2017).
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Fig. 1 Location of the experimental site at the Campus Klein-Altendorf. The UAV-based ortho-
mosaic in the detailed map of the experimental site was taken on the first sampling date of the
first growth (April 26, 2017). Two exemplary heights of the GCPs show a slight slope. R, replicate;
T1 to T3, sampling date 1 to 3 per growth and treatment; e.g. plot T1 in G2 was sampled on the first
sampling date of the second growth.
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2.2 Reference Field Data and Biomass Sampling

Reference measurements (SHRPM) of the compressed sward height were taken using a RPM
(Platemeter F400, Farmworks Precision Farming Systems Ltd., Feilding, New Zealand). The
device uses an electronic digital counter unit to record the compressed sward height per meas-
urement in millimeters and stores each value in an internal memory. The data were downloaded
via USB to a paddock management software (P-PLUS, AgHub Ltd., Feilding, New Zealand)
and were exported as a .csv file. Five RPM measurements were taken per plot prior to biomass
sampling on each date and averaged to represent mean compressed sward height.

A sickle bar mower was used to harvest the biomass of the plots of the respective sampling
date directly after each flight campaign. The fresh biomass (FBM) weight for each harvested plot
was determined by weighing the clipped biomass per plot. Subsamples of 500 g∕plot were
taken, dried in a forced air drier at 65°C to a constant weight and reweighed to determine dry
biomass (DBM) yield per unit ground area. Biomass values were upscaled to tons per hectare.
Owing to slightly differing plot sizes, the area of each plot was calculated based on a high-res-
olution UAV-based orthomosaic (1 cm∕pix: see Sec. 2.3) from the first sampling date (April 26,
2017) and double-checked on site with a tape measure to determine the correct upscaling factor
per plot.

Table 1 Sampling dates for UAV campaigns, reflectance measurements, and reference field
data.

Growth Sampling date number Date UAV ASD RPM Biomass

G1 T0 2017-03-29 x — — —

T1 2017-04-26 x — x x

T2 2017-05-03 x x R. 2 and 3 x x

T3 2017-05-10 x x R. 2 and 3 x x

G2 T1 2017-06-07 x x x x

T2 2017-06-20 x x x x

T3 2017-06-28 x — x x

G3 T0 2017-07-04 x — — —

T1 2017-08-02 x x x x

T2 2017-08-09 x x R. 2 and 3 x x

T3 2017-08-22 x x x x

RPM, rising plate meter; ASD, ASD FieldSpec3; R: replicate; x/—: data/no data; For G1T2, G1T3, and G3T2
only replicates 2 and 3 were measured with the ASD instrument.
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Fig. 3 Monthly temperature (°C) and precipitation (mm) averages (a) for 2017 and (b) for the long-
term average from 1956 to 2015. G1, G2, and G3 indicate duration of growths in 2017. Data are
taken from the local weather station at Campus Klein-Altendorf.
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2.3 Remote Sensing Data Acquisition

2.3.1 UAV-based data acquisition

Image data were collected using a consumer-grade DJI Phantom 4 Advanced (DJI, Shenzhen,
China). The UAV’s camera had a 1" CMOS sensor with 20 megapixels, a field of view of 84 deg
(35 mm equivalent format) and was mounted on a three-axis gimbal (Zenmuse X4S). Waypoint
navigation and automated camera triggering were programmed using the DJI-GO App (DJI,
Shenzhen, China). The flight was set up as a grid pattern (along- and across-track). The flying
height was set to 25 m and the speed to 1.8 m∕s. Due to software problems, the across-track
flight on June 20 had to be flown manually.

Images were captured in 2-s intervals in .jpeg format and saved on an SD card. White balance
was set to manual and adjusted to illumination conditions for each sampling date. All flights
were performed between 9.30 and 11.30 a.m. CET (solar noon: 12 p.m.) in stable illumination
conditions. Forward and lateral image overlaps were >85%.

Twelve ground control points (GCPs) were installed on-site (see Fig. 1). The targets were
plywood boards (30 × 30 cm), painted with a black cross on a light-gray background and
mounted on wooden poles across the field. The GCPs were measured using a Real Time
Kinematic Differential GPS (Topcon HiperPro: Topcon, Tokyo, Japan).

2.3.2 Field spectroradiometer measurements

Canopy reflectance of the sward was measured with an ASD FieldSpec3 spectroradiometer
(Analytical Spectral Devices, Boulder, Colorado, USA). The ASD FieldSpec3 acquires reflec-
tance in the wavelength range from 350 to 2500 nm using three detectors: one in the visible-near
infrared region (VNIR: 350 to 1000 nm) and two for the shortwave-infrared regions (SWIR1:
1001 to 1830, SWIR2: 1831 to 2500). The fiber optic with a field of view of 25 deg was mounted
on an orthogonal suspension rod to ensure fixed viewing geometry for each measurement. The
sensor–canopy distance was set to 60 cm, resulting in a footprint diameter of 26.6 cm.

Reflectance measurements with the spectroradiometer were taken directly after each flight
campaign (between 11 a.m. and 2 p.m. CET, solar noon: 12 p.m.). Eight reflectance measure-
ments per plot were taken with 10 sample counts per spectra. White reference using a Zenith
LiteTM panel and dark current measurements were taken prior to the next plot.

For the first and second growths, reflectance measurements were only possible on two sam-
pling dates due to unstable weather conditions. Furthermore, for the same reason, on three sam-
pling dates, it was only possible to collect reflectance measurements for two of three replicates
(see Table 1). Since the UAV flight time to cover the whole experimental field was only about
10 min, it was possible to acquire image data in stable illumination conditions. In contrast, data
acquisition with the ASD instrument took about 1 to 1½ h and, depending on changing cloud
cover, was sometimes not possible at all.

2.4 Remote Sensing Data Processing and Feature Extraction

2.4.1 UAV-based data processing and feature extraction

The image datasets were processed in the SfM software Agisoft Photoscan Professional v1.4
(Agisoft LLC, St. Petersburg, Russia) to obtain digital surface models (DSMs) and orthomo-
saics, as numerous studies have already demonstrated accurate results.27,49,50

Image alignment was run on “low” with camera reference preselection, to place one of the 12
GCPs in at least 10 images, preferably more. Reference accuracy settings were set to �0.01 m

for GCPs and to �10 m for camera positions. After GCP placement, image alignment was run
again on “high” quality using 100,000 as the key point limit and 400,000 as the tie point limit.
The resulting sparse point clouds were checked for outliers using manual selection. The dense
point cloud was computed using high-quality setting and “mild” depth filtering, to preserve
the finer details of the grass canopy, based on our own previous tests and as suggested by
Cunliffe et al.51
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Table 2 summarizes the outputs of the error reports generated by Agisoft Photoscan v1.4
for each image dataset. The number of images acquired on each sampling date varies due to
the start time of camera triggering and slightly varying speed since the speed was needed to
be set manually using a slider bar in the app at the beginning of each flight.

The highest errors calculated from the GCPs were found in the Y axis, with no error lower
than 4.32 and up to 7.32 cm. Errors in the X axis were between 1.44 and 3.51 cm, and the
errors in the Z axis ranged between 0.91 and 5.91 cm. The highest total errors were reported
for G1-T3 and G2-T2. The highest reprojection error was reported on G1-T1 with 1.72 pixels
and the lowest for G2-T2 with 1.06 pixels. Point densities ranged between 2180 and
2720 points∕m2.

The dense point cloud was used to compute a DSM and an orthomosaic (“mosaic blending
mode”) with a spatial resolution of 2 and 1 cm, respectively, both in WGS 1984, UTM
Zone 32 N. Subsequent raster file processing was completed in ArcGIS Pro v2.1 (ESRI,
Redlands, California, USA).

The workflow described by Bendig et al.49 was applied to extract height features. The DSM
acquired directly after the equalization cut (T0) was subtracted from the DSM of each sampling
date (T1 to T3) per growth to obtain the CSM. Sward height per plot was extracted from each
CSM using a polygonal shapefile of the plots (12.5 cm inward buffer to account for border
effects). The height features included the mean sward height (SHmean) and the 90th percentile
of the sward height (SHp90), since they correlated well with grassland biomass in previous tests
and in the studies by Viljanen et al.7 and Näsi et al.36

The orthomosaic of each sampling date were used to calculate four RGB-based VIs (VIRGB,
see Table 3), from the individual bands of the orthomosaics. For each plot per sampling date,
the mean value of the VIs was extracted using the same polygonal shapefile as for the height
features.

In addition, two composite indices were assessed, the GrassI and the ExcessGreen Index
ðExGIÞ þ SHp90, calculated from one height feature and one VIRGB. Both indices have per-
formed well in estimating grassland biomass.7

The VIs were chosen to be comparable to previous studies that used aerial image data. The
Red-Green-Blue Vegetation Index (RGBVI) was tested for barley biomass in Bendig et al.’s

Table 2 Parameters of image acquisition and processing.

G T Date
Number of
images

X error
cm

Y error
cm

Z error
cm

Total
error cm

Reprojection
error pix

Point density
points∕m2

G1 T0 2017-03-29 284 1.82 4.69 2.47 5.60 1.72 2470

T1 2017-04-26 243 2.03 4.92 2.30 5.80 1.40 2720

T2 2017-05-03 212 1.44 5.65 1.38 5.99 1.58 2500

T3 2017-05-10 245 3.35 7.32 3.36 8.72 1.50 2360

G2a T1 2017-06-07 219 2.07 4.32 0.91 4.88 1.49 2320

T2 2017-06-20b 214 2.60 4.92 5.91 8.12 1.06 2180

T3 2017-06-28 210 2.00 4.79 2.10 5.60 1.49 2260

G3 T0 2017-07-04 207 2.30 4.75 0.89 5.36 1.48 2270

T1 2017-08-02 206 1.68 5.03 2.81 6.00 1.53 2550

T2 2017-08-09 206 3.51 6.01 2.45 7.38 1.49 2540

T3 2017-08-22 219 2.19 4.83 4.95 7.26 1.38 2720

Note: G, growth; T, sampling date number.
aG1-T0 was used to create CSM for G2.
bCross-flight was flown manually due to software issues.

Lussem et al.: Estimating biomass in temperate grassland with high resolution canopy. . .

Journal of Applied Remote Sensing 034525-7 Jul–Sep 2019 • Vol. 13(3)



study24 and for grassland in Bareth et al.’s study44 and showed good-to-moderate results. The
Normalized Green Red Difference Index (NGRDI; also known as Green-Red VI) showed good
results for grassland biomass in Lussem et al.’s study,55 for oats in Jannoura et al.’s study,56 and
for corn and soybean biomass in Hunt et al.’s study.57 The Excess Green Index was originally
intended to calculate fractional vegetation cover54 but showed good results for grassland biomass
estimation.7 Gitelson et al.52 introduced the Visible Atmospherically Resistant Index (VARI) as
an extension of the NGRDI to assess vegetation fraction, but it also showed good results in
estimating grassland biomass.55

2.4.2 Field spectroradiometer-derived vegetation indices

Spectroradiometer measurements were preprocessed in the ASD-software Indico Pro v5.0
(Analytical Spectral Devices, Boulder, Colorado, USA) for sensor offset correction and sub-
sequently processed in the R package “prospectr”58 by applying a Savitzky–Golay filter with
a second-degree polynomial and a moving window size of 17 to smooth the spectra.

For this study, VIs from the VNIR (VIVNIR) region were tested (see Table 4). The Normalized
Difference Vegetation Index (NDVI), Optimized Soil Adjusted Vegetation Index (OSAVI),
Renormalized Difference Vegetation Index (RDVI), Red Edge Inflection Point (REIP), and
Normalized Difference Red-Edge Index (NDREI) were chosen to be comparable to previous
studies.7,36,59–61 In addition, the VIs listed in Table 3 were calculated from narrowband data
acquired by the ASD (with 670 nm as red, 550 nm as green, and 480 nm as blue band) to evaluate
the VIRGB obtained by the UAV’s camera.

Table 4 VIs from the VNIR region tested in this study (VIVNIR). R = Reflectance in percentage of
the respective narrowband.

Name Formula References

Normalized Difference Vegetation Index NDVI R800−R670
R800þR670

Rouse et al. 62

Renormalized Difference Vegetation Index RDVI ðR798−R670Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R798þR670

p � Roujean and Breon 63

Optimized Soil Adjusted Vegetation Index OSAVI ð1þ 0.16Þ × ðR800−R670Þ
ðR800þR670þ0.16Þ Rondeaux et al. 64

Red Edge Inflection Point REIP 700þ 40 ×

�
R670þR780

2

�
−R700

ðR740þR700Þ Guyot and Baret 65

Normalized Difference Red Edge Index NDREI R790−R720
R790þR720

Gitelson and Merzlyak 66

Table 3 Visible band VIs (VIRGB) tested in this study. R, G, and B are the digital numbers (DNs) of
the respective channels red, green and blue; r, g, and b are the normalized DNs of the respective
channels (g = G/(R+G+B), r = R/(R+G+B), b = B/(R+G+B).

Name Formula References

Red-Green-Blue Vegetation Index RGBVI ½ðG×GÞ−ðB×RÞ�
½ðG×GÞþðB×RÞ� Bendig et al.24

Visible Atmospherically Resistant Index VARI G−R
GþR−B Gitelson et al. 52

Normalized Green Red Difference Index NGRDI G−R
GþR Tucker 53

Excess Green Index ExGI 2 × g × r − b Woebbecke et al. 54

Grassland Index GrassI RGBVIþ SHmean Bareth et al. 44

Excess Green Index and height feature ExGISHp90
a ExGIþ SHp90 Viljanen et al. 7

aBased on Viljanen et al., the SHp90 was selected.
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2.5 Statistical Analysis and Evaluation

Statistical analysis was performed in R v3.5.67 The sensitivity of each feature was tested using
Pearson’s Correlation Coefficient (PCC). Bivariate and multivariate linear regression models
were established to estimate biomass as a function of the predictor variables. The package
“caret” was used for statistical modeling.68,69 For the bivariate regression models, each height
and VI feature was taken as a predictor of DBM and FBM. For the multivariate linear regression
(MLR) models, each VI feature was paired with one of the height features. The data were split
based on the three growths and the statistics are reported accordingly.

Prediction accuracy of each predictor variable was quantified using the coefficient of deter-
mination (R2) and root-mean-squared error (RMSE). The performance metrics were calculated
using leave-one-out cross-validation (LOO-CV). LOO-CV holds out one sample point as a refer-
ence, while the regression model is trained using all remaining samples. This process was
repeated n times. The resulting error estimates for n runs were averaged.70

3 Results

3.1 Orthomosaics and Canopy Surface Models

The orthomosaics and CSMs for the three sampling dates of the first growth are presented in
Fig. 4. Both display a good visual correlation to the fertilizer treatments and a detailed
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Fig. 4 CSMs (left panels) and orthomosaics (right panels) for the first growth in 2017: (a) and
(b) T1 April 26, 2017; (c) and (d) T2 May 3, 2017; (e) and (f) T3 May 10, 2017. Lower sward
heights from previously sampled plots or from plots affected by high rodent activity are clearly
distinguishable.
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representation of sward height is achieved with high spatial resolution. The disturbances by
rodents as mentioned above became visible in the CSMs and orthomosaics. In the orthomosaics
of Fig. 4, the effect of a rainfall event on G1-T2 shortly before image acquisition can be seen:
the wet soil appears darker than the dry soil on the first and third sampling dates.

3.2 Reference Measurements

Due to vigorous growth in G3, grass stalks were slightly lodging in the highest fertilizer
treatments (N5 and N6) on G3-T3 (see Fig. 2). Plots with high rodent activity were excluded
from the analysis, since they produced outliers with unreasonable biomass values.

Table 5 summarizes the descriptive statistics of the biomass measurements. G1 and G3
yielded the highest biomass values, while G2 was affected by drought and thus had lower tiller
density and biomass development.

Table 6 summarizes the descriptive statistics for the RPM sward height reference measure-
ments (SHRPM) and the mean sward height derived from CSM (SHCSM). The SHCSM resulted in
a higher range of values and a higher standard deviation than the SHRPM.

Table 5 Descriptive statistics of the biomass measurements for each sampling date per growth.
G, growth; T, sampling date number; min, minimum; max, maximum; sd, standard deviation.

Date

DBM t ha−1 FBM t ha−1

min max mean sd min max mean sd

G1 T1 2017-04-26 1.33 2.87 2.02 0.52 4.49 10.64 7.10 2.12

T2 2017-05-03 1.45 3.83 2.44 0.69 5.01 15.94 9.41 3.22

T3 2017-05-10 1.41 4.37 2.74 0.97 4.56 15.60 9.35 3.60

G2 T1 2017-06-07 0.58 2.27 1.37 0.47 1.95 7.56 4.46 1.66

T2 2017-20-06 0.55 1.70 1.00 0.34 1.90 5.36 3.22 1.03

T3 2017-06-28 1.16 2.36 1.74 0.40 4.29 9.83 6.65 1.66

G3 T1 2017-08-02 0.68 2.17 1.43 0.39 2.21 9.85 5.81 2.24

T2 2017-08-09 1.67 3.57 2.34 0.46 5.30 13.22 8.03 2.00

T3 2017-08-22 2.15 4.10 3.32 0.60 6.94 16.40 11.91 2.68

Table 6 Descriptive statistics of the sward height reference measurements (RPM) and mean
sward height from CSMs for each sampling date per growth. G, growth; T, sampling date number;
min, minimum; max, maximum; sd, standard deviation.

Date

Sward height RPM (cm) Mean sward height CSM (cm)

min max mean sd min max mean sd

G1 T1 2017-04-26 8.14 13.42 10.72 1.67 2.47 14.00 9.43 3.17

T2 2017-05-03 8.90 18.26 12.29 2.59 10.97 22.52 16.14 3.22

T3 2017-05-10 9.84 19.10 14.87 3.34 6.20 22.41 12.88 5.12

G2 T1 2017-06-07 5.82 11.20 8.42 1.46 8.43 19.10 15.39 3.50

T2 2017-20-06 6.18 9.36 7.27 0.92 4.74 13.66 8.31 2.84

T3 2017-06-28 6.44 9.74 7.91 0.96 14.94 22.80 18.79 2.68

G3 T1 2017-08-02 7.40 12.96 9.41 1.52 2.38 13.25 7.27 2.70

T2 2017-08-09 8.18 13.84 10.73 1.83 10.81 18.98 14.26 2.27

T3 2017-08-22 9.74 16.28 13.92 1.89 9.43 21.58 14.52 3.08
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Table 7 lists the PCCs for the CSM-based height features SHp90 and SHmean and the RPM
reference measurements of DBM and FBM. Since the SHp90 correlated slightly better than
SHmean for DBM and FBM, only the SHp90 is described in the following section. For complete-
ness, a sensitivity analysis of all single features by growths, by growths and treatment, and by
growths and sampling date is included in the Appendix (Tables 12–19).

The relationships between DBM and SHRPM and SHp90 are displayed in Fig. 5. SHRPM shows
a strong linear relationship to DBM with little deviation from the regression line for all three
growths.

Table 7 PCCs for the CSM-derived height features (SHmean: CSM-based mean sward height,
SHp90: CSM-based 90th percentile sward height) and rising plate meter (SHRPM) reference
measurements to DBM and FBM for all growths.

Growth 1 Growth 2 Growth 3

DBM FBM DBM FBM DBM FBM

SHRPM 0.94 0.89 0.78 0.68 0.89 0.92

SHmean 0.80 0.85 0.81 0.79 0.75 0.65

SHp90 0.87 0.90 0.83 0.83 0.78 0.68

P < 0.001 for all correlations.
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Fig. 5 Scatterplots of (a) mean CSM-based sward height versus DBM yield, (b) 90th percentile
CSM-based sward height versus DBM yield, (c) mean RPM-based sward height versus DBM
yield, and (d) 90th percentile CSM-based sward height versus mean RPM-based sward height.
P < 0.001 for all correlations.
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The SHp90 feature shows larger deviation from the regression line, while the second growth
falls outside the pattern of the first and third growths. Nevertheless, the R2 for the second growth
was higher for SHp90, compared to the SHRPM. SHRPM and SHp90 were only moderately well
correlated.

Figure 6 presents the relationship between selected VIs and DBM. The UAV-based NGRDI
performed moderately well for the first growth with an R2 of 0.58 but shows no correlation for
the second and third growths. In comparison, the ASD-based nNGRDI performed more con-
sistently for the three growths (see Table 15). Slight lodging of the grass sward in six plots with
high fertilizer treatments at G3-T3 led to a higher deviation from the regression line. The spec-
troradiometer-based NDVI performed moderately well. In comparison to the NGRDI, the ExGI
correlated better with DBM in G3 since the slightly lodging sward in six plots of treatments N5
and N6 seemed to have only a minor effect on the ExGI values.

3.3 Cross-Validation Results of Simple Linear Regression for
Estimation of Dry Biomass and Fresh Biomass

The predictive accuracy of the height features and VIs for biomass estimation was assessed using
LOO-CV. Table 8 displays the cross-validation results of the bivariate regression models of
DBM and each feature by growth. The SHRPM performed best for G1 and G3 in estimating
DBM, with an R2 of 0.87 (RMSE: 0.274 t ha−1) and 0.78 (RMSE: 0.416 t ha−1), respectively,
while the SHp90 performed best for G2 with an R2 of 0.66 (RMSE: 0.287 t ha−1). The perfor-
mance of the UAV-based VIRGB depended on the growth. NGRDI and VARI showed a moderate
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Fig. 6 Scatterplots of selected VIs for all growths: (a) NDVI versus DBM yield (P < 0.001 for all
growths), (b) ExGI versus DBM yield (P < 0.001, 0.208, and <0.001 for G1, G2, and G3, respec-
tively), (c) ASD-based narrowband NGRDI versus DBM yield (P < 0.001 for all growths), and
(d) orthomosaic-based NGRDI versus DBM yield (P < 0.001, 0.067, 0.521 for G1, G2, and
G3, respectively).
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performance with an R2 of 0.54 and 0.58, respectively, for G1 but showed no correlation for
G2 and G3. Excluding G3-T3 (slightly lodging sward in six plots of treatments N5 and N6) led
to a better performance of both indices with an R2 of 0.42 (RMSE: 0.469 t ha−1) and 0.56
(RMSE: 0.409 t ha−1), respectively. Similarly, the R2 of the RGBVI increased to 0.55 (RMSE:
0.416 t ha−1). However, the RGBVI showed no predictive accuracy for G1 and G2. The ExGI
had little-to-no predictive accuracy for G1 and G2 but an R2 of 0.55 (RMSE: 0.601 t ha−1) for
G3. The ASD-based narrowband VIRGB performed well for DBM estimation for G1 and G3,
except for the ExGI. However, only a weak correlation was observed for G2.

The composite indices GrassI and ExGIþ SHp90 performed as expected in the range of the
best-performing component (height features from CSM). TheVIVNIR performed best for G1. The
NDVI, REIP, and NDREI had an R2 of 0.83, 0.86, and 0.87, respectively, while the RDVI per-
formed weak for G1. For G2, the VIVNIR showed moderate predictive accuracy, while the REIP
only had an R2 of 0.29. In G3, the red-edge-based indices REIP and NDREI showed no corre-
lation, and the NDVI, OSAVI, and RDVI showed only a weak predictive accuracy. Similar to
the VIRGB, the exclusion of G3-T3 increased the performance of the NDVI, REIP, and NDREI,
although only a low predictive accuracy could be achieved (NDVI: R2 0.39, RMSE 0.512 t ha−1;
REIP: R2 0.24, RMSE 0.574 t ha−1; NDREI R2 0.26, RMSE 0.567 t ha−1).

Table 9 presents the cross-validation results of the FBM prediction based on simple linear
regression. As for the DBM prediction, SHRPM is the best predictor for FBM for G1 and G3 with

Table 8 Statistics of cross-validation results for bivariate linear regression of DBM yield against
each predictor variable per growth. R2

CV, Cross-validation coefficient of determination; RMSECV,
cross-validation root mean squared error; n, number of samples.

Estimator

Growth 1 Growth 2 Growth 3

R2
CV RMSECV (t ha−1) R2

CV RMSECV (t ha−1) R2
CV RMSECV (t ha−1)

RPM 0.87 0.274 0.58 0.320 0.78 0.416

UAV SHmean 0.61 0.475 0.62 0.305 0.53 0.612

SHp90 0.73 0.394 0.66 0.287 0.57 0.586

RGBVI 0.06 0.740 0.06 0.513 0.32 0.739

NGRDI 0.54 0.518 0.02 0.490 0.11 0.927

VARI 0.58 0.494 0.00 0.502 0.09 0.924

ExGI 0.24 0.664 0.01 0.508 0.55 0.601

GrassI 0.61 0.475 0.61 0.306 0.54 0.610

ExGIþ SHp90 0.73 0.394 0.66 0.287 0.58 0.582

n 43 42 45

ASD NDVI 0.83 0.360 0.55 0.295 0.32 0.767

OSAVI 0.68 0.490 0.51 0.306 0.39 0.723

RDVI 0.56 0.577 0.47 0.321 0.40 0.719

REIP 0.86 0.322 0.29 0.369 0.02 0.924

NDREI 0.87 0.316 0.56 0.291 0.04 0.915

nRGBVI 0.64 0.520 0.28 0.373 0.58 0.602

nNGRDI 0.76 0.422 0.37 0.349 0.57 0.605

nVARI 0.78 0.404 0.38 0.345 0.49 0.664

nExGI 0.44 0.648 0.01 0.459 0.03 0.923

n 22 30 41
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an R2 of 0.78 (RMSE: 1.448 t ha−1) and 0.83 (RMSE: 1.367 t ha−1), respectively. However,
SHp90 has a slightly higher R2 of 0.79 (RMSE: 1.421 t ha−1) for G1 and outperforms SHRPM

for G2 with an R2 of 0.65 (RMSE: 1.166 t ha−1).
The best-performingVIRGB for G1 were the NGRDI and VARI, while both indices obviously

failed to estimate FBM for G2 and G3. The RGBVI showed a better predictive accuracy for
FBM (R2: 0.55, RMSE: 2.070 t ha−1) than for DBM in G2, while the ExGI followed a similar
pattern for FBM prediction as for DBM, with the best performance in G3 (R2: 0.51, RMSE:
2.331 t hav1). The performance of the ASD-based narrowband VIRGB for FBM estimation was
similar to that for DBM estimation. As expected, the composite indices GrassI and ExGI+SHp90
performed in the range of the best-performing single feature (height features from CSM). The
VIVNIR performed best for G1. All indices had a high R2 value above 0.70, and both the red-
edge-based indices REIP and NDREI had an R2 of 0.89. Also, for G2, the R2 values for FBM
prediction of the VIVNIR were 0.65 or slightly higher, except for the REIP, which only had an R2

of 0.36 (RMSE: 1.180 t ha−1). For G3, the best-performing indices were the OSAVI and RDVI
with an R2 of 0.57 (RMSE: 2.252 t ha−1) and 0.59 (RMSE: 2.203 t ha−1), respectively. The low-
est RMSE values were observed for the VIVNIR for G2, where all indices except the REIP had
an RMSE below 0.900 t ha−1.

Observed and predicted DBM for selected features are displayed in Fig. 7. SHRPM is closest
to the 1:1 line, while predictions based on NDVI and SHp90 deviate more from the regression
line, especially for higher DBM values.

Table 9 Statistics of cross-validation results for bivariate linear regression of FBM against
each predictor variable per growth. R2

CV, cross-validation coefficient of determination; RMSECV,
cross-validation root mean squared error; n, number of samples.

Estimator

Growth 1 Growth 2 Growth 3

R2
CV RMSECV (t ha−1) R2

CV RMSECV (t ha−1) R2
CV RMSECV (t ha−1)

RPM 0.78 1.448 0.42 1.504 0.83 1.367

UAV SHmean 0.71 1.670 0.60 1.253 0.38 2.633

SHp90 0.79 1.421 0.65 1.166 0.43 2.526

RGBVI 0.12 2.897 0.55 2.070 0.31 2.773

NGRDI 0.68 1.756 0.06 1.926 0.00 3.397

VARI 0.71 1.648 0.02 1.977 0.01 3.418

ExGI 0.35 2.491 0.12 2.060 0.51 2.331

GrassI 0.71 1.667 0.59 1.261 0.38 2.624

ExGISHp90 0.79 1.410 0.65 1.169 0.43 2.513

n 43 42 45

ASD NDVI 0.84 1.393 0.65 0.868 0.43 2.576

OSAVI 0.81 1.515 0.67 0.842 0.57 2.252

RDVI 0.73 1.812 0.65 0.868 0.59 2.203

REIP 0.89 1.162 0.36 1.180 0.12 3.213

NDREI 0.89 1.172 0.67 0.842 0.15 3.161

nRGBVI 0.59 2.239 0.36 1.188 0.53 2.354

nNGRDI 0.73 1.801 0.47 1.074 0.61 2.136

nVARI 0.77 1.656 0.49 1.053 0.57 2.237

nExGI 0.34 2.839 0.00 1.525 0.00 3.474

n 22 30 41
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3.4 Cross-Validation Results of Multivariate Linear Regression for
Dry Biomass and Fresh Biomass

Estimations of DBM and FBM using combined structural and spectral features by multivariate
linear regression are presented in Tables 10 and 11, respectively. Since the SHp90 outperformed
the SHmean in the SLR models, the SHp90 was chosen as a structural feature for the combination
with the spectral features (VIRGB and VIVNIR).

The combination of SHp90 and the VIRGB yielded similar results with an R2 of 0.72 in G1,
which is comparable to the highest best-performing single feature (SHp90). For G2, the
combination of SHp90 and VIRGB led to a better predictive accuracy for the NGRDI and

Table 10 Statistics of cross-validation results for multivariate linear regression of DBM against
a combination of SHp90 and each VI feature. R2

CV, cross-validation coefficient of determination;
RMSECV, cross-validation root mean squared error; n, number of samples.

Estimator Growth 1 Growth 2 Growth 3

SHp90þ R2
CV RMSECV (t ha−1) R2

CV RMSECV (t ha−1) R2
CV RMSECV (t ha−1)

UAV RGBVI 0.72 0.404 0.64 0.296 0.59 0.570

NGRDI 0.72 0.402 0.75 0.248 0.57 0.585

VARI 0.72 0.403 0.73 0.256 0.60 0.570

ExGI 0.72 0.403 0.64 0.297 0.68 0.509

n 43 42 45

ASD NDVI 0.87 0.307 0.62 0.272 0.63 0.562

OSAVI 0.81 0.379 0.62 0.272 0.70 0.507

RDVI 0.80 0.383 0.60 0.276 0.73 0.483

REIP 0.88 0.294 0.72 0.233 0.58 0.600

NDREI 0.89 0.288 0.72 0.232 0.58 0.599

nRGBVI 0.89 0.292 0.46 0.323 0.75 0.465

nNGRDI 0.89 0.289 0.49 0.314 0.73 0.482

nVARI 0.88 0.298 0.50 0.312 0.69 0.517

nExGI 0.85 0.330 0.53 0.300 0.68 0.523

n 22 30 41
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Fig. 7 Scatterplots of observed versus predicted DBM yield for (a) SHp90 as predictor variable,
(b) NDVI as predictor variable, and (c) SHRPM as predictor variable. Cross-validation R2 values are
presented.
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VARI (R2 of 0.75 and 0.73, respectively). For G3, the combination of SHp90 and ExGI showed
the best result with an R2 of 0.68 and an RMSE of 0.509 t ha−1. The ASD-based narrowband
RGB indices performed again similar to the VIVNIR in combination with the height feature for
DBM and FBM.

For the VIVNIR, the results improved significantly for the combination of SHp90 with OSAVI
and RDVI for G1, while the other features showed only slight improvement. For G2, the REIP
and NDREI showed the best R2 values with both 0.72, while combining SHp90 and the NDVI,
OSAVI or RDVI led to R2 values lower than the best-performing single feature (SHp90). In G3,
the combination of OSAVI and RDVI with SHp90 predicted DBM most accurately, while REIP
and NDREI performed in the range of the best single feature (SHp90). A similar pattern was
observable for the multivariate estimation of FBM.

4 Discussion

The primary aims of this study were (1) evaluating the ability of height features and VI features
derived from UAV-based image data to predict DBM and FBM in grassland and (2) comparing the
performance of these features with established VIs from the VNIR spectral region and RPM refer-
ence measurements. Although Bareth and Schellberg6 found that SHRPM and the SHCSM correlated
well, in this study, both features only correlate at a low-to-medium level depending on the growths.
The SHCSM features tend to overestimate the manually measured SHRPM, which was expected
due to the compression of the sward when using the RPM.6 Furthermore, the choice of the
RPM instrument might have influenced the correlation due to a different disk weight and diameter.

Recent studies using SfM-MVS to derive canopy height models for grassland have obtained
reference measurements in the field with a height stick or a ruler. Dependent on the sward struc-
ture, species composition, and growing stage, Grüner et al.46 achieved R2 values of 0.56 and
0.70 and Viljanen et al.7 report R2 values of 0.61 to 0.93 when comparing SHCSM with manual
reference measurements from height sticks. Forsmoo et al.47 achieved R2 values of 0.64 and 0.72

Table 11 Statistics of cross-validation results for multivariate linear regression of FBM against a
combination of SHp90 and each VI feature. R2

CV, cross-validation coefficient of determination;
RMSECV, cross-validation root mean squared error; n, number of samples.

Estimator Growth 1 Growth 2 Growth 3

SHp90þ R2
CV RMSECV (t ha−1) R2

CV RMSECV (t ha−1) R2
CV RMSECV (t ha−1)

UAV RGBVI 0.78 1.453 0.64 1.180 0.47 2.421

NGRDI 0.81 1.346 0.78 0.935 0.41 2.575

VARI 0.81 1.335 0.77 0.954 0.42 2.546

ExGI 0.79 1.425 0.63 1.198 0.57 2.191

n 43 42 45

ASD NDVI 0.92 1.003 0.67 0.844 0.59 2.188

OSAVI 0.90 1.118 0.71 0.794 0.72 1.811

RDVI 0.89 1.169 0.71 0.789 0.76 1.677

REIP 0.93 0.931 0.74 0.748 0.49 2.460

NDREI 0.93 0.932 0.78 0.685 0.49 2.443

nRGBVI 0.91 1.038 0.45 1.100 0.63 2.086

nNGRDI 0.91 1.011 0.51 1.038 0.68 1.945

nVARI 0.92 1.002 0.52 1.023 0.66 2.000

nExGI 0.88 1.203 0.44 1.114 0.50 2.415

n 22 30 41
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when comparing reference measurements from RPMs and SHCSM for a grassland field of mainly
perennial ryegrass and clover in southwest England. Higher correlation between RPM reference
measurements and low-cost SHCSM (R2 of 0.83 to 0.91) were reported by Bareth and Schellberg6

for three consecutive years in the long-term Rengen Grassland Experiment (RGE) in Germany.
In contrast to manual measurements, the CSM approach captures the spatial variability of the
plant height in much finer detail.

To obtain sward height, the CSM-approach described by Bendig et al.49 was used. Table 2
shows that the errors of the reconstructed DSMs in X, Y, and Z directions were within the
range of up to 7.3 cm, which clearly have an impact on calculating sward height when DSM-T0

is subtracted from DSM-T1-n. The high error rates may be due to several factors such as the
suboptimal placement of GCPs or the sensor geometry of the DJI P4A camera. Owing to over-
growing of the border strips between the plots, it was not possible to classify a DTM representing
the ground for every sampling date. For small-scale field experiments, DTM classification or
measuring ground surface points with an real time kinematic differential GPS may be more
feasible. Nevertheless, the CSM approach by Bendig et al.49 may be more applicable to actual
field conditions since ground surface classification may not be viable for a fully covered grass-
land field of several hectares with varying topography. However, the CSM approach by Bendig
et al49 requires that the data for the base model are acquired over the bare soil surface of the field,
which is not feasible for grassland fields due to permanent vegetation coverage.

The high rodent activity in a few plots per growth led to higher uncertainties in SHCSM

calculation, which, in some cases, resulted in negative sward height values and unreasonable
biomass values. The decision to exclude these plots improved the biomass estimation, although
these disturbances are likely to occur in the field.

Biomass prediction models based on LOO-CV results showed moderate accuracies
depending on the growths when using the height features (SHmean and SHp90). Viljanen
et al.7 reported correlation coefficients between 0.75 and 0.98 for biomass prediction using
height features from CSM but concluded that biomass prediction accuracy was dependent on
the density and growth stage of the sward. Näsi et al.36 reported correlation coefficients for
grassland biomass prediction between 0.10 and 0.41. Grüner et al.46 achieved R2 values of
0.46 and up to 0.87 depending on the sward composition for mixed legume-grass swards and
pure legumes and grass stands. Roth and Streit50 analyzed different cover crops, and the pre-
diction accuracy for biomass improved when lodging plants were excluded from the analysis.
Our findings are, thus, comparable to other studies. Since G2 was affected by drought
(see Fig. 3), low biomass, low tiller density, and low sward heights in G2 led to a weak
correlation when all growths were combined in a single regression analysis (see Fig. 8).

Similar results were also observed by Grüner et al.46 when pure grass stands from the second
growth in 2017 were excluded. These findings indicate that challenges remain when using SfM-
MVS reconstruction to determine a global model for biomass estimation in pure grass swards.

The varying accuracy especially of the VIRGB from the orthomosaics as biomass predictors
might be explained by several factors such as the varying soil color due to rainfall events or
drought, bent stalks or flowers. Owing to vigorous growth in plots of treatments N5 and N6 in
G3-T3, stalks tended to bend over, and as a result, a higher proportion of the spectral signature of
the stalks was captured instead of the desired nadir view of the canopy (see Fig. 2). In this study,
the correlation of the UAV-based VIRGB by growth and treatment did not yield more robust results
than the analysis of the features excluding the treatment effects. Furthermore, no clear pattern
between treatments and VIs is recognizable in the sensitivity analysis (see Tables 14–16). For
clarification, an extended sensitivity analysis of all single features can be found in the Appendix.

Dependent on the sampling date, the illumination conditions were stable but either sunny
or overcast, which probably contributed significantly to the UAV-based VIRGB values. This
observation was also shown by Rasmussen et al.71 for wheat. Furthermore, the effect of rainfall
shortly before image acquisition probably influenced theVIRGB values due to changing soil color
(see Fig. 1) The study by Viljanen et al.7 achieved correlation coefficients of 0.70 to 0.85 for
the correlation of biomass and RGBVI, NGRDI, and ExGI. However, for the random forest
classifier, the VIRGB was not among the most important features in estimating grass biomass.

The choice of multiple linear regression (one VI feature + one height feature) was motivated
by the search for a robust and simple model that can be applied to different growths per season.
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Initial tests on different interaction terms for the MLR (such as VI feature × height feature) did
not yield more robust results.

The performance of the composite VIs GrassI and ExGIþ SHp90 did not yield significantly
better results than the multivariate regression of the respectiveVIRGB and height features, as they
rely on the quality of both features. Owing to the different viewing geometry and technique of
the ASD-based VIs, these features are not directly comparable to the results of the UAV-based
VIRGB. As expected, VIs from a well-calibrated instrument, and including the NIR spectral
region, performed better and more consistently over all growths than the UAV-based
VIRGB.

24,38 However, all ASD-based VIs had a decreasing accuracy from G1 to G3 and were
affected by slightly lodging sward in six plots with higher N-treatments, as mentioned already.
The ASD-based narrowband VIRGB validates the respective VIs as viable for biomass prediction
in grassland and demonstrate the challenges associated with uncalibrated sensors such as the
camera used in this study.

The heterogeneous sward structure with high spatiotemporal variability compared to crops led
to varying performance for biomass estimation depending on the growths and choice of predictor
variable. It is therefore essential to study this topic further and to evaluate different swards under
varying conditions and sites and over multiple years. A promising approach is the application
of high-resolution multispectral imaging sensors, such as the MicaSense RedEdge camera
(Micasense Inc., Seattle), which can readily be employed on a UAV. Furthermore, comparing
simple regression techniques with more sophisticated algorithms such as random forest should be
explored for larger datasets of grassland biomass and UAV-based structural and spectral features.

5 Conclusions

Estimating biomass in high spatial and temporal resolution is a key component in precision
agriculture applications and ecosystem monitoring. In this study, SfM-MVS-derived features
of sward height and VIs from UAV-based images were assessed as predictors of grassland
above-ground biomass and compared to established narrowband VIs from spectroradiometer
measurements. The application of UAV-based imaging sensors serves as a fast and nondestruc-
tive method for data acquisition with high spatial and temporal resolution.

This study has shown that, especially for the first growth, which is considered the most impor-
tant from an agronomical point of view, grassland biomass estimation by SfM-MVS-derived sward
height from UAV-based images is feasible and provides an alternative means to manual measure-
ment techniques such as RPMs or clipping. However, the results are influenced by various factors
such as growing stage, sward composition, and biotic and abiotic factors, which need to be further
investigated. Further research should be focused on integrating structural and spectral features for
grassland biomass estimation and on generalizing models to different sites and years.
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Fig. 8 Relationship between (a) 90th percentile CSM-based sward height and DBM yield for all
growths in 2017 and (b) only for growths 1 and 2.
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6 Appendix

The appendix contains Tables 12–19 for sensitivity analysis (Pearson’s correlation coefficient,
PCC) of the features (vegetation indices and canopy height) tested in this study for estimation of
dry biomass yield (DBM).

Table 12 PCCs for DBM and UAV-based VIs by growth (G). ExGI, ExcessGreen Index; NGRDI,
Normalized Green Red Difference Index; RGBVI, Red-Green-Blue Vegetation Index; VARI,
Visible Atmospherically Resistant Index.

G ExGI NGRDI RGBVI VARI

1 0.54* 0.76* 0.34*** 0.79*

2 0.20***** 0.29**** 0.14***** 0.20*****

3 0.76* 0.10****** 0.60* 0.09******

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.

Table 14 PCCs for DBM and UAV-based VIs and height features by growth (G) and treatment
(N: kg N / ha). ExGI, ExcessGreen Index; NGRDI, Normalized Green Red Difference Index;
RGBVI, Red-Green-Blue Vegetation Index; VARI, Visible Atmospherically Resistant Index;
SHmean, mean sward height from CSMs; SHp90, 90th percentile sward height from CSM.

G N ExGI NGRDI RGBVI VARI SHmean SHp90

1 0 0.47***** 0.68**** 0.31***** 0.71*** 0.90** 0.90**

100 0.72***** 0.71***** 0.74**** 0.70***** −0.02****** 0.19******

200 0.20****** 0.47***** 0.07****** 0.55***** 0.69*** 0.85**

300 0.78*** 0.78*** 0.73*** 0.75*** 0.80*** 0.84**

400 0.63***** 0.77*** 0.59***** 0.80*** 0.91** 0.95*

500 0.01****** 0.24****** −0.06****** 0.33****** 0.71***** 0.81****

Table 13 PCCs for DBM and narrowband ASD-based VIs by growth (G). NDREI, Normalized
Difference Red-Edge Index; NDVI, Normalized Difference Vegetation Index; OSAVI, Optimized Soil
Adjusted Vegetation Index; RDVI, Renormalized Difference Vegetation Index; REIP, Red Edge
Inflection Point; nExGI, ExcessGreen Index; nNGRDI, Normalized Green Red Difference Index;
nRGBVI, Red-Green-Blue Vegetation Index; and nVARI, Visible Atmospherically Resistant Index.

G NDREI NDVI OSAVI RDVI REIP nExGI nNGRDI nRGBVI nVARI

1 0.94* 0.93* 0.86* 0.79* 0.94* −0.72* 0.90* 0.84* 0.91*

2 0.78* 0.78* 0.76* 0.73* 0.62* 0.20***** 0.67* 0.61* 0.68*

3 0.33*** 0.61* 0.67* 0.67* 0.30**** 0.32*** 0.78* 0.78* 0.73*

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.
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Table 14 (Continued).

G N ExGI NGRDI RGBVI VARI SHmean SHp90

2 0 0.51***** 0.10****** 0.42***** 0.05****** 0.78*** 0.78***

100 −0.02****** 0.45***** −0.09****** 0.44***** 0.81*** 0.85***

200 0.09****** 0.04****** 0.08****** −0.00****** 0.86** 0.85**

300 −0.06****** 0.19****** −0.10****** 0.17****** 0.76*** 0.81***

400 0.36***** −0.54***** 0.35***** −0.59***** 0.93** 0.92**

500 −0.38****** −0.35****** −0.37****** −0.26****** 0.90*** 0.91***

3 0 0.90** 0.26****** 0.89** 0.17****** 0.49***** 0.55*****

100 0.95* −0.14****** 0.97* −0.22****** 0.79*** 0.80***

200 0.95* −0.36***** 0.87** −0.24****** 0.92** 0.95*

300 0.74*** −0.53***** 0.12****** −0.25****** 0.62**** 0.65****

400 0.48***** −0.50***** −0.12****** −0.18****** 0.79*** 0.76***

500 0.70***** −0.32****** 0.32****** −0.22****** 0.77**** 0.79****

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.

Table 15 PCCs for DBM and narrowband ASD-based RGB VIs by growth (G) and treatment
(N: kg N / ha). nExGI, ExcessGreen Index; nNGRDI, Normalized Green Red Difference Index;
nRGBVI, Red-Green-Blue Vegetation Index; nVARI, Visible Atmospherically Resistant Index.

G N nExGI nNGRDI nRGBVI nVARI

1 0 0.64***** 0.41****** 0.16****** 0.52*****

100 0.27****** 0.97*** 0.97*** 0.96***

200 −0.16****** 0.78***** 0.70***** 0.82*****

300 −0.93***** 0.99***** 0.98***** 0.78*****

400 −0.48****** 0.49****** 0.31****** 0.61*****

500 −0.92***** −0.48****** −0.40****** −0.61******

2 0 0.57***** 0.68***** 0.73***** 0.67*****

100 0.41****** 0.59***** 0.56***** 0.59*****

200 0.29****** 0.63***** 0.62***** 0.63*****

300 0.57***** 0.64***** 0.64***** 0.65*****

400 0.41***** 0.74***** 0.73***** 0.74*****

500 −0.42****** −0.23****** −0.17****** −0.26******
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Table 15 (Continued).

G N nExGI nNGRDI nRGBVI nVARI

3 0 0.24****** 0.82*** 0.83*** 0.81***

100 0.80*** 0.96* 0.98* 0.95**

200 0.37***** 0.70**** 0.76*** 0.57*****

300 0.73**** 0.81*** 0.89** 0.70****

400 0.58***** 0.80*** 0.85*** 0.50*****

500 0.83*** 0.83*** 0.85*** 0.79****

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.

Table 16 PCCs for DBM and ASD-based VNIR VIs by growth (G) and treatment (N: kg N / ha).
NDREI, Normalized Difference Red-Edge Index; NDVI, Normalized Difference Vegetation Index;
OSAVI, Optimized Soil Adjusted Vegetation Index; RDVI, Renormalized Difference Vegetation
Index; REIP, Red Edge Inflection Point.

G N NDREI NDVI OSAVI RDVI REIP

1 0 0.45****** 0.43****** 0.57***** 0.54***** 0.34******

100 0.71***** 0.86***** 0.33****** 0.07****** 0.49******

200 0.77***** 0.73***** 0.37****** 0.15****** 0.77*****

300 0.90***** 1.00**** −0.54****** −0.73***** 0.80*****

400 0.84***** 0.66***** 0.63***** 0.24****** 0.91****

500 0.87***** 0.91***** −0.97***** −0.99**** 0.91*****

2 0 0.76**** 0.75**** 0.73**** 0.71***** −0.01******

100 0.75***** 0.59***** 0.52***** 0.47****** 0.41******

200 0.81**** 0.67***** 0.60***** 0.55***** 0.68*****

300 0.40****** 0.58***** 0.65***** 0.69***** 0.12******

400 0.92*** 0.80***** 0.70***** 0.63***** 0.91***

500 −0.65***** −0.30****** −0.59***** −0.77***** −0.53*****

3 0 0.81*** 0.87*** 0.63***** 0.50***** 0.65*****

100 −0.02****** 0.86*** 0.91** 0.88** −0.28******

200 −0.07****** 0.58***** 0.43***** 0.39***** −0.17******

300 −0.38***** 0.40***** 0.79*** 0.78*** −0.40*****

400 −0.54***** −0.18****** −0.07****** −0.01****** −0.47*****

500 0.34****** 0.67***** 0.88*** 0.91*** 0.34******

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.
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Table 17 PCCs for DBM and UAV-based VIs and height features by growth (G) and sampling
date (T). ExGI, ExcessGreen Index; NGRDI, Normalized Green Red Difference Index; RGBVI,
Red-Green-Blue Vegetation Index; VARI, Visible Atmospherically Resistant Index; SHmean, mean
sward height from CSMs; SHp90, 90th percentile sward height from CSM.

G T ExGI NGRDI RGBVI VARI SHmean SHp90

1 17-04-26 0.50**** 0.80* 0.34**** 0.84* 0.76* 0.79*

17-05-03 0.83* 0.88* 0.52*** 0.86* 0.85* 0.88*

17-05-10 0.81** 0.97* 0.35**** 0.96* 0.99* 0.99*

2 17-06-07 0.76* 0.82* 0.68** 0.82* 0.70** 0.73**

17-06-20 0.03****** 0.53*** 0.01****** 0.56*** 0.68** 0.70**

17-06-28 −0.23**** 0.14****** −0.25**** 0.30**** 0.75** 0.85*

3 17-08-02 0.76** 0.75** 0.77* 0.69** 0.17****** 0.25****

17-08-09 0.65** 0.71** 0.72** 0.68** 0.67** 0.67**

17-08-22 −0.06****** 0.68** −0.52**** 0.71** 0.65*** 0.67**

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.

Table 18 PCCs for DBM and narrowband ASD-based RGB VIs by growth (G) and sampling date
(T). nExGI, ExcessGreen Index; nNGRDI, Normalized Green Red Difference Index; nRGBVI,
Red-Green-Blue Vegetation Index; nVARI, Visible Atmospherically Resistant Index.

G T nExGI nNGRDI nRGBVI nVARI

1 17-05-03 −0.69*** 0.88* 0.83* 0.89*

17-05-10 −0.73*** 0.93* 0.86** 0.94*

2 17-06-07 −0.07****** 0.78* 0.72** 0.78*

17-06-20 −0.59*** 0.22****** 0.07****** 0.23******

3 17-08-02 −0.42****** 0.80* 0.71** 0.82*

17-08-09 −0.50**** 0.71*** 0.52**** 0.74**

17-08-22 −0.53*** 0.26****** −0.30****** 0.59***

*P ≤ 0.001.
**P ≤ 0.01.
***P ≤ 0.05.
****P ≤ 0.1.
*****P ≤ 0.5.
******P ≤ 0.99.
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