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Abstract. Linear mixed model (LMM) has been extensively applied for hyperspectral com-
pressive sensing (CS) in recent years. However, the error introduced by LMM that limits the
reconstruction performance has not been given full consideration. We propose an algorithm for
hyperspectral CS based on LMM under the assumption of known endmembers. At the sampling
stage, only spectral compressive sampling is carried out to keep the abundance information as
much as possible. At the reconstruction stage, the proposed algorithm estimates abundance by
using linear unmixing from the spectral observed data. Moreover, the model error introduced by
LMM is explored; a joint convex optimization scheme for estimation of both abundance and
model error is established and solved by the alternating iteration approach to achieve the optimal
reconstruction. Experimental results on a real hyperspectral dataset demonstrate that the pro-
posed algorithm significantly outperforms the other state-of-the-art hyperspectral CS algorithms.
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1 Introduction

In recent years, hyperspectral images (HSIs) have been widely used in the fields of ground
classification, environmental monitoring, military reconnaissance, and so on, since they contains
abundant spatial and spectral information of imaging objects. However, with the continuous
improvement of both spatial and spectral resolutions of imaging spectrometer, the amount of
acquired hyperspectral data increases exponentially, which brings great challenges to the data
storage and transmission. Compressive sensing (CS) technique integrates data acquisition and
compression, which collect the sparse or compressible signal at a much lower sampling rate
than Nyquist sampling theorem and reconstruct the original signal with a higher probability.1

At present, CS has been successfully applied in HSI compression.2–6 Hyperspectral CS only
captures a small number of sampling data of the original HSI by using incoherent measurement
for reconstruction. Compared with traditional compression methods, hyperspectral CS signifi-
cantly reduces the amount of data that needs to be collected; moreover, it also reduces the re-
source consumption of imaging. Therefore, hyperspectral CS has attracted remarkable attention
in the field of hyperspectral remote sensing.

Hyperspectral CS has two key problems: one is the design of the measurement matrix and the
other is the reconstruction algorithm. The core of the former is how to design the measurement
matrix so that it can retain the effective information of the original HSI for reconstruction as
much as possible; the latter is how to reconstruct the target HSI based on the observed data.

*Address all correspondence to Yongjian Nian, E-mail: yjnian@126.com

Journal of Applied Remote Sensing 036514-1 Jul–Sep 2019 • Vol. 13(3)

https://doi.org/10.1117/1.JRS.13.036514
https://doi.org/10.1117/1.JRS.13.036514
https://doi.org/10.1117/1.JRS.13.036514
https://doi.org/10.1117/1.JRS.13.036514
https://doi.org/10.1117/1.JRS.13.036514
mailto:yjnian@126.com
mailto:yjnian@126.com


In general, the measurement matrix is required to be incoherent with the original HSI, where
Gauss random matrix as the measurement matrix is a better choice.7 It should be pointed out that
the design of the measurement matrix is beyond the scope of this paper; we mainly focus on the
reconstruction of hyperspectral CS. At present, many popular reconstruction algorithms have
been proposed. Noor and Jacobs8 proposed a video imaging measurement scheme for the static
scene by exploiting sparsity along the time dimension. After acquiring all measurements re-
quired for the first frame, the measurements are acquired only from the areas that change in
subsequent frames. In Ref. 9, block compressed sensing-smooth projected Landweber (BCS-
SPL) employs a block-based random sampling and a projected Landweber reconstruction based
on the sparsity in the directional transform domain with a smooth reconstructed image. Note that
convex optimization combined with certain prior knowledge has been widely used in the recon-
struction of hyperspectral CS. In Ref. 10, by taking advantage of convex optimization method,
three-dimensional compressive sampling (3-D CS) performed the reconstruction by exploiting
the sparse, low-rank, and three-dimensional (3-D) smoothing characteristics of HSI and achieved
good reconstruction results. In Ref. 11, the structure similarity property was explored to improve
the reconstruction accuracy beyond the prior hypothesis of low rank, spatial correlation, and
spatial smoothness. Zhang et al.2 proposed a reweighted Laplace prior-based hyperspectral
CS method to introduce structure information into sparsity prior, which can further improve
the reconstruction accuracy. Wang et al.3 adopted the tensor analysis to model spatial correlation
and local smoothness, where the tensor tucker decomposition was used to describe the global
spatial and spectral correlation and the weighted 3-D total variance (TV) was used to characterize
the local smooth image. Another kind of reconstruction algorithm is based on the idea of matrix
decomposition using the statistical characteristics. The typical algorithm is the compressive pro-
jection principal component analysis (CPPCA)12 and its derivative algorithms.13–15 CPPCA
shifts the computational burden of principal component analysis from the resource-constrained
encoder to the base-station decoder, which significantly improves the computational efficiency.

Linear mixed model (LMM) is explicitly physically meaningful and is usually a good
approximation for HSI, in spite of the existence of nonlinear mixing effects.16 In recent years,
regarded as an effective priori information, LMM has been successfully applied in hyperspectral
CS for reconstruction with high accuracy, which decomposes the HSI into some endmembers
and an abundance matrix.17 Based on LMM, the original HSI can be easily reconstructed by the
product of endmembers and abundance. With a known spectral library of endmembers, Ramirez
et al.18 proposed a spectral unmixing algorithm directly from the observed data acquired by the
coded aperture snapshot spectral imaging system, which shows that estimating abundance from
the observed data is completely feasible. In Ref. 19, the theoretical lower bound of the observed
values for compressed sensing reconstruction using LMM was given, and the abundance was
estimated by using the sparse prior under the assumption that the endmembers are known.
Assuming that the endmembers are given, Martín et al.16 developed a framework for hyperspec-
tral CS called hyperspectral coded aperture, where abundance can be estimated by solving a
convex optimization problem including a data term connected to the measurement matrix and
a TV regularization term. Instead of using the given endmembers, Zhang et al.4 proposed a
locally similar sparsity-based hyperspectral CS algorithm to decompose the HSI with an estab-
lished redundant endmember library. Martín and Bioucas-Dias5 proposed a blind hyperspectral
reconstruction technique termed spectral compressive acquisition, which supposes that HSI
belongs to a low-dimensional subspace that can be learned from the observed data. In our pre-
vious work,20 we developed a special kind of measurement matrix that projects the original HSI
into spatial and spectral observed data for estimation of endmembers and abundance, respec-
tively, and then spectral unmixing was performed for the reconstruction based on LMM. Based
on Ref. 20, a joint optimization model was established to estimate endmembers and abundance,
which obtains better reconstruction performance.6

Although the above reconstruction algorithms, by using linear unmixing, have achieved good
reconstruction, they all neglected the error introduced by the model itself. In fact, nonlinear
mixing still occurs in the spectral mixture model due to multiple reflections from a surface.
Therefore, the model error of LMM should be given more attention. In our study, we also work
under the assumption that endmembers are known or may be estimated from the original HSI.
The main contribution of this paper is to propose a hyperspectral CS reconstruction algorithm
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based on LMM, in which only spectral sampling is performed on the original HSI to obtain the
observed data, and then spectral unmixing is employed for the reconstruction of target HSI based
on LMM. In particular, the model error is explored from the observed data by using convex
optimization with the TV regularization term, and a joint optimization scheme for estimating
abundance and model error is proposed and solved by alternate iteration to obtain the optimal
reconstruction quality. Experimental results demonstrate the effectiveness of the proposed
algorithm.

The rest of this paper is organized as follows. In Sec. 2, the framework of the proposed
algorithm is described. In Sec. 3, the compressive sampling scheme for the proposed algorithm
is given. In Sec. 4, the joint optimization scheme for estimating abundance and model error is
presented, and in Sec. 5, experimental results on real hyperspectral data are shown. Finally,
Sec. 6 gives some concluding remarks.

2 Framework of the Proposed Algorithm

In general, HSI can be denoted as X ¼ ½X1;X2; : : : ;XL�T ∈ RL×N , where N is the total number
of spatial pixels in each band, L is the number of spectral bands, and Xlð1 ≤ l ≤ LÞ is the vector
representation of the l’th band. As one of the simplest and most effective hypotheses, LMM has
been widely used in the spectral unmixing of HSI, which assumes that the abundance represents
the relative region associated to certain endmember, thus the spectrum is modeled as a linear
combination of several endmembers weighted by the corresponding abundances. Let E ∈ RL×p

be the endmember matrix and S ∈ Rp×N be the abundance matrix, where p is the number of
endmember in HSI. According to LMM, HSI can be written as

EQ-TARGET;temp:intralink-;e001;116;453X ¼ ESþW; (1)

where W represents the model error. As seen from Eq. (1), the reconstruction of the target HSI
can be converted to the reconstruction of endmembers, abundance, and model error. At present,
a large number of advanced endmember extraction techniques have been proposed. On the other
hand, many spectral libraries have been established in succession, such as United States
Geological Survey and Jet Propulsion Laboratory. Therefore, it is reasonable to suppose E to
be known or estimated from the original HSI. On the premise that E is known, the main goal of
our study is to estimate the abundance matrix S and error matrix W from the observed data. As
for the sampling scheme of the proposed algorithm, it should be pointed out that spatial sampling
that only performs measurement within each band may significantly destroy the abundance
information, and spectral sampling is recommended because it can keep abundance information
more completely. Moreover, the reconstruction by spectral sampling can make full use of the
strong spectral correlation, which is important for improving reconstruction performance.
According to the above description, the framework of the proposed algorithm is given in Fig. 1.
At the sampling stage, the spectral compressive sampling is performed on X to obtain the ob-
served data Y, where A is the measurement matrix. At the reconstruction stage, the initial values
of both S and W are first determined, and then the joint convex optimization method is estab-
lished to perform alternating iterative solution on S and E; once their optimal values are obtained,
the final reconstruction of the target HSI can be achieved according to LMM. In this paper, the
proposed algorithm is denoted as spectral compressed reconstruction based on spectral unmixing
and error compensation (SCR-SUEC), with more details given in Secs. 3 and 4.

Fig. 1 Framework of the proposed algorithm.
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3 Spectral Compressive Sampling

The proposed SCR-SUEC performs compressive sampling on the spectral vector at each pixel to
obtain available information for the following reconstruction. Let A be the measurement matrix
with size of J × L (J ≪ L) and Y ∈ RJ×N be the observed data. Combined with Eq. (1), the
spectral sampling processing can be expressed as

EQ-TARGET;temp:intralink-;e002;116;668Y ¼ AX ¼ AESþ AW: (2)

It is obvious that Y has the same size with X in spatial dimension. However, the spectral dimen-
sion of Y is reduced by A compared with that of X, where the degree of reduction depends on
J value. The sampling rate can be calculated by J∕L, where a larger J leads to a high sampling
rate and a small J leads to a low sampling rate. In this paper, the measurement matrix A is
generated by rounding a Gaussian random sampling matrix to achieve a binary matrix according
to the desired sampling rates.

The hardware designs for CS applications have been paid more and more attention. Note
that digital micromirror device (DMD) array has been successfully applied for compressive sam-
pling. Based on the works in Refs. 5 and 21, the optical design of the proposed algorithm on a
pushbroom platform is given in Fig. 2, which mainly contains four elements: the first one is the
grating that splits the reflected light from the object into different wavelengths; the second one is
the cylindrical lens that can convert the divergent light at different wavelength into parallel light;
the third one is the DMD that generates the measurement matrix controlled by a specific pro-
gram; and, finally, the cylindrical lens sum the reflected light from the DMD to obtain the
observed data by using the linear charge-coupled device array.

4 Proposed Reconstruction Algorithm

4.1 Analysis of Model Error

As mentioned earlier, only spectral sampling is performed on the original HSI, and the abun-
dance information can be well preserved by this sampling manner. According to Eq. (1), if we
want to estimate S, it is necessary to obtain the estimation of W first. To deal with this problem,
W is temporarily neglected; thus, Eq. (1) becomes X ¼ ES. In this case, the spectral sampling
processing can be rewritten as

EQ-TARGET;temp:intralink-;e003;116;331Y ¼ AX ¼ AES: (3)

Because the observed data Y, measurement matrix A, and endmember matrix E are all known, it
is easy to obtain the estimation of S, according to Eq. (3), by using least squares (LS) method as

EQ-TARGET;temp:intralink-;e004;116;276Ŝ ¼ ½ðAEÞTAE�−1ðAEÞTY: (4)

Fig. 2 A simple scheme of optical design on a pushbroom platform.
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It must be pointed out that LMM is only an approximation model of HSI, and the use of
LMM to describe HSI will not escape from occurrence of error. Note that S estimated by Eq. (4)
is obtained under the condition of neglecting error term of LMM; thus, the final reconstruction
can be achieved directly by multiplying E by S. However, there must be a certain degree of
inevitable model error between this reconstruction and the original one. Unfortunately, the model
error of LMM has not been taken into account in the existing algorithms. In this paper, the
proposed SCR-SUEC further explores the model error of LMM from spectral observed data,
which is of great significance to improve the final reconstruction performance. Note that it
is an nondeterministic polynomial-hard problem to calculate S and W from Y simultaneously.
Nevertheless, we can utilize alternating iterations to tackle this problem. According to Eq. (2),
once S is estimated, since A and E have been known, we can easily obtain the observed data ofW
(i.e., AW). Then, it is possible to estimate W from AW by using optimization method with
reasonable regularization. To improve the estimation precision, the estimation of W should
be further used to update S. Therefore, it is necessary to propose a joint optimization scheme
to calculate the optimal estimation of both S and W.

4.2 Joint Optimization for Abundance and Model Error

In this paper, a joint optimization scheme utilizing an alternating iterative manner to calculate S
and W is proposed. That is, first assume that W is fixed and solve S; then fix S and solve W;
alternate iteration continues until the stopping criterion is satisfied.

4.2.1 Estimation of abundance

Given the measurement matrix A and the endmember matrix E, the abundance matrix S can be
estimated from the spectral observed data Y, subject to LMM. If the sampling rate is high
enough, the dimension of the subspace of original HSI is smaller than the spectral dimension
of the observed data Y, that is, p < J. In this case, the estimation of S is actually an over-
determined problem. We can simply estimate S by solving the following constrained optimiza-
tion problem:

EQ-TARGET;temp:intralink-;e005;116;374min
S

kAX − Yk2F s:t: X ¼ ESþW; (5)

where kCkF ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tracefCCTg

p
denotes the Frobenius norm of C. Note that Eq. (5) is actually a

constrained LS problem, which can be converted to an unconstrained optimization problem as

EQ-TARGET;temp:intralink-;e006;116;313Sk ¼ arg min
S

kAESþ AWk−1 − Yk2F þ λ1kESþWk−1 − Xk−1k2F ¼ arg min
S

kCkS − Dkk2F;
(6)

where λ1 is a regularization parameter, and the superscript k (k ¼ 1;2; 3; : : : ) represents the k’th
alternating iteration. Matrix Ck and Dk can be expressed as

EQ-TARGET;temp:intralink-;e007;116;239Ck ¼
�
AEffiffiffiffiffi
λ1

p
E

�
; Dk ¼

�
AWk−1 − Yffiffiffiffiffi
λ1

p ðWk−1 − Xk−1Þ
�
: (7)

Now, Sk can be estimated by the LS method as

EQ-TARGET;temp:intralink-;e008;116;182Sk ¼ ½ðCkÞTCk�−1ðCkÞTDk; (8)

where CT is the transposed matrix of C and C−1 is the inverse matrix of C.
Before the beginning of the joint optimization process, it is necessary to determine the initial

values of both S andW. In general, the initial value ofW is set to zero; thus, the initial value of S
can be obtained as

EQ-TARGET;temp:intralink-;e009;116;102S0 ¼ ½ðAEÞTAE�−1ðAEÞTY: (9)
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4.2.2 Estimation of model error

Based on the analysis of the model error in Sec. 4.1, we now estimateW by solving the following
optimization problem with TV regularization:

EQ-TARGET;temp:intralink-;e010;116;692min
W

1

2
kAESþ AW − Yk2F þ λTVTVðWÞ s:t: X ¼ ESþW; (10)

where λTV > 0 is the regularization parameter of TV regularization term. TVðWÞ is defined as
the spatial anisotropy TV norm of W which can be expressed as

EQ-TARGET;temp:intralink-;e011;116;627TVðWÞ ≜ kFWk1;1 ¼ kFvWTk1;1 þ kFhWTk1;1; (11)

where kCk1;1 ≡
P

L
i¼1 kcik1 (ci is the i’th column vector of C), Fv and Fh are the discrete gradient

operators in horizontal and vertical directions, respectively. The constrained optimization prob-
lem given in Eq. (10) can be translated into an unconstrained optimization problem as

EQ-TARGET;temp:intralink-;e012;116;558Wk ¼ arg min
W

1

2
kAESk þ AW − Yk2F þ λTVkFWk1;1 þ

λ2
2
kESk þW − Xk−1k2F; (12)

where λ2 > 0 is a regularization parameter. Let U ¼ Y − AESk, V ¼ Xk−1 − ESk, H1 ¼ AW,
H2 ¼ W, H3 ¼ W, H4 ¼ FH3, then Eq. (12) can be rewritten as

EQ-TARGET;temp:intralink-;e013;116;492

min
H1;H2;H3;H4

1

2
kH1 − Uk2F þ λ2

2
kH2 − Vk2F þ λTVkH4k1;1

s:t: AW ¼ H1; W ¼ H2; W ¼ H3; FH3 ¼ H4: (13)

In this paper, alternative direction multiplier method (ADMM) algorithm is employed to solve
this optimization problem.22 The augmented Lagrangian function for W, H1, H2, and H3 is

EQ-TARGET;temp:intralink-;e014;116;408

LðW;H1;H2;H3;H4;Q1;Q2;Q3;Q4Þ ¼
1

2
kH1 − Uk2F þ λ2

2
kH2 − Vk2F þ λTVkH4k1;1

þ μ

2
kAW −H1 − Q1k2F þ μ

2
kW −H2 − Q2k2F

þ μ

2
kW −H3 − Q3k2F þ μ

2
kFH3 −H4 − Q4k2F; (14)

where μ > 0 is a positive penalty constant and Q1, Q2, Q3, and Q4 denote the Lagrange
multipliers.

Note that each iteration of the ADMM only minimizes the augmented Lagrangian function
with respect to one variable and fixes the others to the last iteration value. However, the dual
variables (Lagrange multipliers) are also updated by the gradient descent method in each iterative
loop. By minimizing the augmented Lagrangian function L with respect to W, we can obtain

EQ-TARGET;temp:intralink-;e015;116;248

Wt ¼ arg min
W

LðW;H1;H2;H3;H4;Q1;Q2;Q3;Q4Þ

¼ arg min
W

μ

2
kAW −Ht−1

1 − Qt−1
1 k2F

þ μ

2
kW −Ht−1

2 − Qt−1
2 k2F þ μ

2
kW −Ht−1

3 − Qt−1
3 k2F

¼ ðATAþ 2ILÞ−1
�
ATðHt−1

1 þ Qt−1
1 Þþ

ðHt−1
2 þ Qt−1

2 Þ þ ðHt−1
3 þ Qt−1

3 Þ

�
; (15)

where IL ∈ RL×L is an identity matrix. The superscript t represents the t’th iteration for calcu-
lating W. The optimization problem to calculate H1 at t’th iteration can be written as
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EQ-TARGET;temp:intralink-;e016;116;735

Ht
1 ¼ arg min

H1

LðW;H1;H2;H3;H4;Q1;Q2;Q3;Q4Þ

¼ arg min
H1

1

2
kH1 − Uk2F þ μ

2
kAWt −H1 − Qt−1

1 k2F

¼ 1

1þ μ
½U þ μðAWt − Qt−1

1 Þ�: (16)

Similarly, H2 at the t’th iteration can be obtained by solving the following optimization problem

EQ-TARGET;temp:intralink-;e017;116;640

Ht
2 ¼ arg min

H2

LðW;H1;H2;H3;H4;Q1;Q2;Q3;Q4Þ

¼ arg min
H2

λ2
2
kH2 − Vk2F þ μ

2
kWt −H2 − Qt−1

2 k2F

¼ 1

λ2 þ μ
½V þ μðWt − Qt−1

2 Þ�: (17)

H3 at the t’th iteration can be obtained by solving the following optimization problem

EQ-TARGET;temp:intralink-;e018;116;535

Ht
3 ¼ argmin

H3

LðW;H1;H2;H3;H4;Q1;Q2;Q3;Q4Þ

¼ argmin
H3

μ

2
kWt −H3 − Qt−1

3 k2F þ μ

2
kFH3 −Ht−1

4 − Qt−1
4 k2F

¼ ðFTFþ IÞ−1½Wt − Qt−1
3 þ FTðHt−1

4 þ Qt−1
4 Þ�; (18)

and H4 at the t’th iteration can be obtained by solving the following optimization problem

EQ-TARGET;temp:intralink-;e019;116;443

Ht
4 ¼ argmin

H4

LðW;H1;H2;H3;H4;Q1;Q2;Q3;Q4Þ

¼ argmin
H4

λTVkH4k1;1 þ
μ

2
kFHt

3 −H4 − Qt−1
4 k2F

¼ soft

�
FHt

3 − Qt−1
4 ;

λTV
μ

�
; (19)

where soft(*) denotes the component-wise application of the soft-threshold function. At the end
of each iteration, for calculating W, the Lagrange multipliers Q1, Q2, Q3, and Q4 are updated
by the gradient descent method as follows:

EQ-TARGET;temp:intralink-;e020;116;315

Qt
1 ¼ Qt−1

1 − AWt þHt
1;

Qt
2 ¼ Qt−1

2 −Wt þHt
2;

Qt
3 ¼ Qt−1

3 −Wt þHt
3;

Qt
4 ¼ Qt−1

4 − FHt
3 þHt

4: (20)

Note that all functions that form the objective function L in Eq. (14) are closed, proper, and
convex. If Eq. (13) exists as an optimal solution, the following constraints will be met.

EQ-TARGET;temp:intralink-;e021;116;206εt ¼ kAW −H1kF þ kW −H2kF þ kW −H3kF þ kFH3 −H4kF → 0 as t → ∞: (21)

If Eq. (13) does not have a solution, then ε will diverge. As for the stopping criterion in
Algorithm 1, we use εt ≤

ffiffiffiffi
N

p
εref , where the reference value εref > 0. In the later experiments,

we empirically set εref equal to 10−5. In summary, the estimation of W by ADMM is described
in Algorithm 1.
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4.3 Reconstruction of HSI

The reconstruction of the target HSI in the k’th alternate iteration can be expressed as

EQ-TARGET;temp:intralink-;e022;116;421Xk ¼ ESk þWk: (22)

The termination parameter is defined as the relative change of the adjacent alternate iteration
results

EQ-TARGET;temp:intralink-;e023;116;365ζ ¼ kXk − Xk−1kF
kXkkF

: (23)

Note that the alternate iteration process will be stopped once ζ is smaller than a preset value. In
summary, the proposed reconstruction is described in Algorithm 2.

Algorithm 2 The proposed SCR-SUEC algorithm.

Inputs: A, E , Y

Set parameters: λ1, λ2, λTV , and μ

Initialize: W 0, S0, and set k ¼ 1

Repeat:

1. compute Sk using constrained LS method by Eq. (8);

2. compute Wk by Algorithm 1;

3. compute Xk by Eq. (22);

4. update iteration k ¼ k þ 1;

until stopping criterion is satisfied;

Output: The reconstructed HSI X̂ ¼ X k .

Algorithm 1 ADMM for estimating Wk .

Inputs: A, E , Y , Sk

Set parameters: λ2, λTV, and μ

Initialize: W 0;H0
1; : : : ;H

0
4, Q

0
1; : : : ;Q

0
4, and set t ¼ 1

Repeat:

1. compute W t by minimizing L with respect to W by Eq. (15);

2. compute H t
1 by minimizing L with respect to H1 by Eq. (16);

3. compute H t
2 by minimizing L with respect to H2 by Eq. (17);

4. compute H t
3 by minimizing L with respect to H3 by Eq. (18);

5. compute H t
4 using soft-threshold operation by Eq. (19);

6. update Lagrange multipliers Q1, Q2, Q3, and Q 4 by Eq. (20);

7. update iteration: t ¼ t þ 1;

until stopping criterion is satisfied;

Output: model error matrix W k ¼ W t .
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5 Experimental Results and Discussion

Experimental results are reported in terms of sampling rates, signal-to-noise ratio (SNR) struc-
tural similarity (SSIM) and computational complexity, where SNR can effectively evaluate
the reconstruction quality of each algorithm under certain sampling rate. The band-based SNR
measured in decibels is defined as

EQ-TARGET;temp:intralink-;e024;116;668SNRðXl; X̂lÞ ¼ 10 log10
kXlk22

kXl − X̂lk22
: (24)

Note that there have been several popular algorithms that were used for hyperspectral CS, such as
BCS-SPL,9 3-D CS,10 and CPPCA,12 and several improved algorithms based on CPPCA. To
illustrate the efficiency of the proposed algorithm, the reconstruction quality of the proposed
SCR-SUEC was compared with that of the above algorithms and the SCR-SUEC without error
compensation (SCR-SU). In this paper, we use the raw data of HSIs as the tested data. As we
know, raw data are the original data that are acquired by airborne or spaceborne platforms with-
out any preprocessing, which are helpful in evaluating the performance of the algorithm objec-
tively. The raw HSIs acquired by airborne visible infrared imaging spectrometer (AVIRIS) are
employed for performance evaluation. The six tested data are referred to aviris_sc0.raw, avir-
is_sc3.raw, aviris_sc11.raw, aviris_sc18.raw, hawaii_sc01.raw, and maine_sc10.raw.23 Owing to
the limitation of 3-D CS algorithms, the spatial size of all tested images were intercepted to
180 × 180, with 224 spectral bands and 2 bytes for each pixel, where the 90th band of each
image is shown in Fig. 3.

5.1 Parameters Selection for the Proposed SCR-SUEC

Since the performance of the proposed SCR-SUEC is sensitive to the setting of parameters λ1, λ2,
λTV, and μ, we first investigate the reasonable range for the above parameters setting with a

Fig. 3 The 90th band of original images of six HSIs: (a) aviris_sc0.raw, (b) aviris_sc3.raw,
(c) aviris_sc11.raw, (d) aviris_sc18.raw, (e) hawaii_sc01.raw, and (f) maine_sc10.raw.
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sampling rate of 0.5. Figure 4 shows the reconstructed quality by using different values of the
above four parameters for the proposed SCR-SUEC. We can empirically observe that the param-
eter λTV plays a dominant role. Note that the three parameters (λ1, λ2, and λTV) can obtain good
reconstruction results within a certain range of values. In general, the recommended ranges of λ1,
λ2, and λTV are [0.001, 1], [0.001, 1] and [0.0001, 0.01], respectively. Note that the parameter
μ controls the convergence speed of the ADMM algorithm. Adaptive adjustment of parameter μ
will perform well in most cases. Similar with the above parameters, the value of parameter μ in a
large range can guarantee high reconstruction quality, where the recommended range of μ is
[0.005, 1]. As for the proposed SCR-SUEC, according to the above recommended range,
λ1 and λ2 are both set to 0.1, λTV is set to 0.003, and μ is set to 0.05.

5.2 Comparison of Reconstruction Performance

In this study, we assume that the endmembers are known, which can be selected from the spec-
trum library. Although there have been several off-the-shelf spectrum libraries that provide a
large amount of standard spectrum of different objects, those standard ones are obviously differ-
ent with the spectrum in the actual HSI due to the weather influence, imaging conditions, and
so on.4 Therefore, we employed the popular vertex component analysis24 algorithm on each
considered HSI to extract a certain amount of endmembers to establish a spectrum library for
spectral unmixing, which is an international common practice for such research.

The performance of the proposed SCR-SUEC was first compared with BCS-SPL, 3-D CS,
CPPCA, and SCR-SU, with the sampling rates ranging from 0.1 to 0.5 with a step size of 0.1.
The relationship between SNR and sampling rates is reported in Fig. 5. Note that the block size
employed by BCS-SPL is set to 50 × 50. As we know, BCS-SPL has only spatial sampling
process, while the others have only spectral sampling process. For the sake of fairness, the total

Fig. 4 Value analysis of three regularization parameters λ1, λ2, and λTV as well as the penalty
constant μ for the proposed SCR-SUEC algorithm: (a) λ1, (b) λ2, (c) λTV, and (d) μ
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sampling rates in all of the above algorithms are identical. It is easy to see that, with the increase
of sampling rate, the reconstruction performance of all algorithms improves gradually. However,
the growth speed of both SCR-SU and SCR-SUEC is relatively slow compared with the other
algorithms. The performance of the above two algorithms has relatively low sensitivity on sam-
pling rates, which indicates that the proposed algorithm can also achieve a perfect performance at
a low sampling rate. Although BCS-SPL employs the block-based CS scheme to perform hyper-
spectral CS, its average performance is the worst, since BCS-SPL handles each band separately
without considering the spectral correlation. Another problem for BCS-SPL is the difficulty to
select the optimal block size. Note that a large block size provides better performance than a
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Fig. 5 Comparison of reconstruction performance using SNR: (a) aviris_sc0.raw, (b) aviris_
sc3.raw, (c) aviris_sc11.raw, (d) aviris_sc18.raw, (e) hawaii_sc01.raw, and (f) maine_sc10.raw.
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small block size. However, a large block size also leads to a high computational complexity. By
utilizing both the spatial and spectral sparsity, 3-D CS can improve the reconstruction perfor-
mance, compared with BCS-SPL at high sampling rates. However, the performance of 3-D CS is
worse than that of BCS-SPL at low sampling rates. In general, CPPCA may perform better than
3-D CS with low computational efficiency. In our study, the performance achieved by CPPCA is
better than that achieved by 3-D CS for all tested HSIs except that at a low sampling rate of
0.1 because CPPCA cannot work normally at very low sampling rates, which is a significant
drawback for CPPCA.

It is obvious that SCR-SU performs much better than BCS-SPL, CPPCA, and 3-D CS at all
sampling rates, which demonstrates the superiority of reconstruction quality by using spectral
unmixing. Compared with 3-D CS that uses convex optimization to reconstruct the target HSI,
the proposed SCR-SUEC uses convex optimization to reconstruct the error image instead of the
target HSI. In general, SCR-SU can be regarded as a special case of SCR-SUEC without error
compensation. Since there is model error between ES and X, despite SCR-SU yielding satisfied
reconstruction, by exploiting model error, SCR-SUEC can further improve the reconstruction
performance. As can be seen, with the lowest sampling rate (i.e., 0.1), since it is really difficult to
explore the error image due to the lack of necessary information, SCR-SUEC may degenerate
into SCR-SU. Even so, it still provides much better reconstructed quality than other algorithms.
With the increase of sampling rate, SCR-SUEC achieves a prominent performance gain com-
pared with SCR-SU since the model error is well explored. Note that when the sampling rate
reaches 0.5, the performance gap between SCR-SUEC and SCR-SU can be more than 2 dB.
In fact, the onboard hyperspectral data usually have raw format without any correction and other
processing; therefore, the experimental results on raw dataset can be more convincing. On the
other hand, in terms of onboard compression, low compression ratio is usually employed in order
to preserve the information as much as possible. Because low sampling rates can easily destroy
significant amounts of information in HSI, higher sampling rates are preferred. In this case, SCR-
SUEC can significantly outperform all the other algorithms.

In addition to SNR, SSIM is also used to evaluate the reconstructed quality. The comparison
of reconstructed quality using SSIM is reported in Fig. 6. As can be seen, 3-D CS outperforms
BCS-SPL significantly. When the sampling rate is lower, such as 0.1, since CPPCA fails at low
sampling rates, the SSIM achieved by CPPCA is too small. As for the other sampling rates, the
performance of CPPCA is better than the two algorithms mentioned above. Note that SCR-SU
performs better than the other algorithms. Moreover, SCR-SUEC can significantly improve
SSIM, compared with SCR-SU. Therefore, the results in Fig. 6 further demonstrate the effec-
tiveness of the proposed SCR-SUEC in CS reconstruction for HSIs.

Compared with objective quality evaluation by using SNR, subjective quality evaluation
should also be considered. The reconstructed images of the 90th band of aviris_sc18.raw
achieved by various algorithms with a sampling rate of 0.5 are shown in Fig. 7. Because each
pixel of the tested images has 2 bytes, the reconstructed images are displayed by using their
normalized values. As can be seen from this figure, the visual quality of the reconstructed images
by BCS-SPL is not satisfying, which is too rough to distinguish the detailed features for the
following processing. Compared with BCS-SPL, 3-D CS only slightly improves the perfor-
mance, despite considering the spectral sparsity, while CPPCA significantly improves the per-
formance, which effectively retains the detailed features with a higher SNR. Note that SCR-SU
outperforms the above three algorithms not only in visual effect but also in SNR, where the
detailed textures are more close to the original image. By exploring the model error, SCR-
SUEC can further improve the reconstruction quality compared with SCR-SU, where the maxi-
mum performance gain can be more than 5 dB for some bands. Although this improvement is not
evident in the visual effect, it may be very important for some applications, such as classification,
segmentation, and target detection.

The comparison of reconstructed images achieved by various algorithms at a low sampling
rate of 0.2 is also given in Fig. 8. As can be seen, the quality of the reconstructed images obtained
by both BCS-SPL and 3-D CS is poor, and the former has obvious block effect. CPPCA provides
general reconstruction quality, which is better than that provided by both BCS-SPL and 3-D CS.
Note that the reconstructed images by SCR-SU and SCR-SUEC are very comfortable for eyes,
where the detailed features are more distinct than the other reconstructed ones. This indicates that
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at a lower sampling rate, SCR-SU and SCR-SUEC provide great advantages over the other algo-
rithms. Note that the proposed SCR-SUEC can still achieve a performance gain compared with
SCR-SU even at a low sampling rate. To further compare the performance of above algorithms,
Fig. 9 shows the comparison of reconstructed images at a low sampling rate of 0.1. It is clear that
the quality of reconstructed images obtained by BCS-SPL, 3-D CS, and CPPCA is too bad,
where there is serious block effect in the reconstructed images obtained by BCS-SPL and regular
horizontal noise strips in the reconstructed images obtained by CPPCA. Although the error
exploration can hardly work at very low sampling rate, we can still obtain the reconstruction
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Fig. 6 Comparison of reconstruction performance using SSIM: (a) aviris_sc0.raw, (b) aviris_
sc3.raw, (c) aviris_sc11.raw, (d) aviris_sc18.raw, (e) hawaii_sc01.raw, and (f) maine_sc10.raw.
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with much higher quality, which shows the great advantage over BCS-SPL, 3-D CS, and
CPPCA.

To further illustrate the performance from the perspective of spectral feature preservation, the
average spectral angle distance (SAD) is introduced to measure the quality of the reconstructed
images, which can be calculated as

EQ-TARGET;temp:intralink-;e025;116;237SADðr; zÞ ¼ arccos

�XL
k¼1

rkzk∕

ffiffiffiffiffiffiffiffiffiffiffiffiXL
k¼1

rk

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiXL
k¼1

zk

vuut �
; (25)

where r and z are the two spectral curves with L pixels. Note that SAD can effectively evaluate
the distortion of spectral curves, where the larger the SAD value, the greater the distortion.
Table 1 gives the comparison of average SAD achieved by various algorithms at a sampling
rate of 0.5. As can be seen, SCR-SU provides lower SAD for all tested images than BCS-
SPL, 3-D CS, and CPPCA, and the proposed SCR-SUEC further reduces SAD values based
on SCR-SU, demonstrating its excellent preservation ability of spectral characteristic.

The comparison of spectral curves of aviris_sc0 is given in Fig. 10, where the spatial location
is (50, 50) and the sampling rate is 0.2. It is obvious that the spectral curve obtained by the
proposed SCR-SUEC has the highest similarity with the original one even at the low sampling

Fig. 8 Comparison of reconstructed images of the 90th band of aviris_sc18.raw with a sampling
rate of 0.2: (a) BCS-SPL, SNR ¼ 16.22 dB, (b) 3-D CS, SNR ¼ 21.74 dB, (c) CPPCA, SNR ¼
30.44 dB, (d) SCR-SU, SNR ¼ 48.16 dB, and (e) SCR-SUEC, SNR ¼ 48.78 dB.

Fig. 9 Comparison of reconstructed images of the 90-th band of aviris_sc18.raw with a sampling
rate of 0.1: (a) BCS-SPL, SNR ¼ 14.42 dB, (b) 3-D CS, SNR ¼ 16.59 dB, (c) CPPCA, SNR ¼
2.97 dB, (d) SCR-SU, SNR ¼ 39.31 dB, and (e) SCR-SUEC, SNR ¼ 39.33 dB.

Fig. 7 Comparison of reconstructed images of the 90th band of aviris_sc18.raw with a sampling
rate of 0.5: (a) BCS-SPL, SNR ¼ 19.86 dB, (b) 3-D CS, SNR ¼ 31.60 dB, (c) CPPCA, SNR ¼
42.03 dB, (d) SCR-SU, SNR ¼ 49.97 dB, and (e) SCR-SUEC, SNR ¼ 55.07 dB.
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Fig. 10 Comparison of spectral curves at the same spatial location obtained by various
algorithms.

Table 2 Comparison of reconstruction performance achieved by various algorithms (unit: deci-
bels). The maximum SNR at each sampling rates is specified in boldface.

Sampling rates 0.2 0.3 0.4 0.5

CPPCA 13.95 16.80 20.11 22.65

C-CPPCA 16.55 19.65 21.55 23.62

MH(NU)-CPPCA 17.59 22.03 25.11 27.55

MH(U)-CPPCA 17.26 21.52 24.53 26.92

MH(NU)-C-CPPCA 19.16 23.13 25.44 27.95

MH(U)-C-CPPCA 18.99 22.48 24.94 27.34

SCR-SU 31.17 32.29 32.76 33.16

SCR-SUEC 31.47 33.06 34.06 35.14

Table 1 Comparison of SAD achieved by various algorithms (sampling rate = 0.5). The smallest
SAD for each data is specified in boldface.

BCS-SPL 3-D CS CPPCA SCR-SU SCR-SUEC

aviris_sc0.raw 0.0268 0.0242 0.0053 0.0026 0.0020

aviris_sc3.raw 0.0606 0.0372 0.0157 0.0038 0.0028

aviris_sc11.raw 0.0491 0.0350 0.0047 0.0036 0.0027

aviris_sc18.raw 0.0657 0.0388 0.0087 0.0031 0.0024

hawaii_sc01.raw 0.0230 0.0490 0.0049 0.0038 0.0029

maine_sc10.raw 0.0369 0.0697 0.0042 0.0029 0.0022
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rate, which is very important for the postprocessing applications of reconstructed images to
achieve better results.

The performance of the proposed algorithm was also compared with some improved CPPCA
algorithms, such as class-dependent compressive projection principal component analysis (C-
CPPCA),25 MH(U)-CPPCA, MH(NU)-CPPCA, MH(U)-C-CPPCA, and MH(NU)-C-CPPCA,15

where MH denotes the multiple hypotheses, U denotes the uniform grouping, and NU denotes
nonuniform grouping. Table 2 gives the comparison of reconstruction performance achieved by
various algorithms tested in University of Pavia. As can be seen, SCR-SU performs much better
than the other state-of-art algorithms; moreover, the proposed SCR-SUEC can further improve
the reconstruction performance, compared with SCR-SU, which demonstrates the superiority of
error estimation and compensation.

5.3 Comparison of Complexity

As for the computational complexity of the SCR-SUEC algorithm, the most time-consuming
step is to calculate W and H3 in each iteration, where the orders of complexity are OðNJ2Þ and
OðJN log NÞ, respectively. The overall order of complexity in per iteration is given as OðNJ2 þ
JN log NÞ. Furthermore, we use the average running time per band to evaluate the complexity of
each algorithm, which is reported in Table 3. Note that the algorithms were implemented using
Matlab2014 on a desktop PC equipped with an Intel Core CPU (3.30 GHz) and 8 GB of RAM
memory. As can be seen, BCS-SPL has the highest complexity; meanwhile, its reconstructed per-
formance is the worst. The complexity of 3-D CS is much lower than that of BCS-SPL. CPPCA
also has relatively low complexity. SCR-SU provides high reconstructed performance with the
lowest complexity. Owing to the iterative operation, the complexity of the proposed SCR-SUEC
is much higher than that of SCR-SU. However, SCR-SUEC can outperform all the other algo-
rithms in terms of reconstructed performance. Because the reconstruction process is carried out on
the ground, where the computing resources are often sufficient, therefore, a certain degree of
increase in complexity will not have a significant impact on practical application.

6 Conclusion

In this paper, a reconstruction algorithm from spectral compressive sampling by exploring model
error of LMM is proposed. Supposing the endmembers are known, compressive sampling only
performed on the spectral direction of the original HSI to retain the information of abundance. At
the reconstruction stage, considering the limitation of LMM, the error introduced by LMM is
further explored by solving an optimization problem with the TV regularization. To further
improve the reconstruction accuracy, a joint optimization scheme for estimating abundance and
model error is proposed and an alternate iterative updating manner for their calculation is carried
out. Once we obtain the optimal results of abundance and model error, the final reconstruction of
the target HSI can be achieved according to LMM. Experimental results on several real hyper-
spectral datasets demonstrate that the proposed SCR-SUEC outperforms the other classical algo-
rithms in terms of both SNR and visual effect. In future research, more powerful sparse

Table 3 Comparison of complexity achieved by different
algorithms (unit: seconds).

Running time/band

BCS-SPL 5.612

3-D CS 3.179

CPPCA 0.005

SCR-SU 0.001

SCR-SUEC 3.317
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representation should be explored for the estimation of model error, which may further improve
reconstruction performance, especially under low sampling rates.

Acknowledgments

This work was supported by the Overseas Visiting and Research Project for Excellent Young
Key Talents in Higher Education Institutions in Anhui Province (No. gxgwfx2019056), the
Quality Engineering Project of Universities of Anhui Province (No. 2016zy126), and Chongqing
Research Program of Basic Research and Frontier Technology (No. cstc2016jcyjA0539). The
authors would like to thank the anonymous reviewers for their outstanding comments and
suggestions, which greatly improved the technical quality of this paper.

References

1. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
2. L. Zhang et al., “Exploring structured sparsity by a reweighted Laplace prior for hyperspec-

tral compressive sensing,” IEEE Trans. Image Process. 25(10), 4974–4988 (2016).
3. Y. Wang et al., “Compressive sensing of hyperspectral images via joint tensor Tucker

decomposition and weighted total variation regularization,” IEEE Geosci. Remote Sens.
Lett. 14(12), 2457–2461 (2017).

4. L. Zhang et al., “Locally similar sparsity-based hyperspectral compressive sensing using
unmixing,” IEEE Trans. Comput. Imaging 2(2), 86–100 (2016).

5. G. Martín and J. M. Bioucas-Dias, “Hyperspectral blind reconstruction from random
spectral projections,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(6), 2390–2399
(2016).

6. L. Wang et al., “Compressed sensing reconstruction of hyperspectral images based on spec-
tral unmixing,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(4), 1266–1284 (2018).

7. J. Hahn et al., “Compressive sensing and adaptive direct sampling in hyperspectral imag-
ing,” Digital Signal Process. 26, 113–126 (2014).

8. I. Noor and E. L. Jacobs, “Adaptive compressive sensing algorithm for video acquisition
using a single-pixel camera,” J. Electron. Imaging 22(2), 021013 (2013).

9. S. Mun and J. E. Fowler, “Block compressed sensing of images using directional trans-
forms,” in Proc. IEEE Int. Conf. Image Process., Cairo, Egypt, pp. 3021–3024 (2009).

10. X. B. Shu and N. Ahuja, “Imaging via three-dimensional compressive sampling (3DCS),” in
Proc. IEEE Int. Conf. Comput. Vision, Barcelona, Spain, pp. 439–446 (2011).

11. Y. B. Jia, Y. Feng, and Z. L. Wang, “Reconstructing hyperspectral images from compressive
sensors via exploiting multiple priors,” Spectrosc. Lett. 48(1), 22–26 (2014).

12. J. E. Fowler, “Compressive-projection principal component analysis,” IEEE Trans. Image
Process. 18(10), 2230–2242 (2009).

13. W. Li, S. Prasad, and J. E. Fowler, “Integration of spectral-spatial information for hyper-
spectral image reconstruction from compressive random projections,” IEEE Geosci. Remote
Sens. Lett. 10(6), 1379–1383 (2013).

14. N. H. Ly, Q. Du, and J. E. Fowler, “Reconstruction from random projections of hyperspec-
tral imagery with spectral and spatial partitioning,” IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 6(2), 466–472 (2013).

15. C. Chen et al., “Reconstruction of hyperspectral imagery from random projections using
multihypothesis prediction,” IEEE Trans. Geosci. Remote Sens. 52(1), 365–374 (2014).

16. G. Martín, J. M. Bioucas-Dias, and A. Plaza, “HYCA: a new technique for hyperspectral
compressive sensing,” IEEE Trans. Geosci. Remote Sens. 53(5), 2819–2831 (2015).

17. J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: geometrical, statistical, and
sparse regression-based approaches,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2),
354–379 (2012).

18. A. Ramirez, G. R. Arce, and B. M. Sadler, “Spectral image unmixing from optimal coded-
aperture compressive measurements,” IEEE Trans. Geosci. Remote Sens. 53(1), 405–415
(2015).

Wang et al.: Exploring error of linear mixed model for hyperspectral image. . .

Journal of Applied Remote Sensing 036514-17 Jul–Sep 2019 • Vol. 13(3)

https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIP.2016.2598652
https://doi.org/10.1109/LGRS.2017.2771212
https://doi.org/10.1109/LGRS.2017.2771212
https://doi.org/10.1109/TCI.2016.2542002
https://doi.org/10.1109/JSTARS.2016.2541541
https://doi.org/10.1109/JSTARS.2017.2787483
https://doi.org/10.1016/j.dsp.2013.12.001
https://doi.org/10.1117/1.JEI.22.2.021013
https://doi.org/10.1109/ICIP.2009.5414429
https://doi.org/10.1109/ICCV.2011.6126273
https://doi.org/10.1080/00387010.2013.850727
https://doi.org/10.1109/TIP.2009.2025089
https://doi.org/10.1109/TIP.2009.2025089
https://doi.org/10.1109/LGRS.2013.2242043
https://doi.org/10.1109/LGRS.2013.2242043
https://doi.org/10.1109/JSTARS.2012.2217942
https://doi.org/10.1109/JSTARS.2012.2217942
https://doi.org/10.1109/TGRS.2013.2240307
https://doi.org/10.1109/TGRS.2014.2365534
https://doi.org/10.1109/JSTARS.2012.2194696
https://doi.org/10.1109/TGRS.2014.2322820


19. M. Golbabaee, S. Arberet, and P. Vandergheynst, “Compressive source separation: theory
and methods for hyperspectral imaging,” IEEE Trans. Image Process. 22(12), 5096–5110
(2013).

20. Z. L. Wang, Y. Feng, and Y. B. Jia, “Spatio-spectral hybrid compressive sensing of hyper-
spectral imagery,” Remote Sens. Lett. 6(3), 199–208 (2015).

21. J. E. Fowler, “Compressive pushbroom and whiskbroom sensing for hyperspectral remote-
sensing imaging,” in Proc. IEEE Int. Conf. Image Process., Paris, France, pp. 684–688
(2014).

22. S. Boyd et al., “Distributed optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2010).

23. Jet Propulsion Lab., “AVIRIS free data,” California Institute of Technology, Pasadena,
http://aviris.jpl.nasa.gov/html/aviris.freedata.html (2008).

24. J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to
unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005).

25. W. Li, S. Prasad, and J. E. Fowler, “Classification and reconstruction from random projec-
tions for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 51(2), 833–843 (2013).

Zhongliang Wang received his PhD in signal and information processing in 2015 from the
School of Electronics and Information, Northwestern Polytechnical University, Xi’an, China.
Currently, he is an associate professor at the Department of Electric Engineering, Tongling
University, Tongling, China. His research interests include image enhancement and hyperspec-
tral remote sensing.

Mi He received her PhD in information and communication engineering in 2012 from the
National University of Defense and Technology, Changsha, China. Since 2015, she has been
an associate professor at the College of Biomedical Engineering and Imaging Medicine, Army
Medical University. Her research involves remote sensing and biomedical signal processing.

Zhen Ye received her PhD in information and communication engineering from the North-
western Polytechnical University, Xi’an, China, in 2015. She spent one year as an exchange
student at Mississippi State University. Currently, she is an associate professor at the School
of Electronics and Control Engineering, Chang’an University. Her research interests include
hyperspectral image (HSI) analysis, pattern recognition, and machine learning.

Yongjian Nian received his PhD in information and communication engineering from the
National University of Defense and Technology, Changsha, China. He is an associate professor
at the College of Biomedical Engineering and Imaging Medicine, Army Medical University.
His research fields include HSI processing, pattern recognition, and machine learning.

Liang Qiao received his PhD in biomedical engineering in 2017 from Army Medical University,
Chongqing, China. He is an associate professor at College of Biomedical Engineering
and Imaging Medicine, Army Medical University. His research interests include pattern recog-
nition and machine learning.

Mingsheng Chen received his PhD from the College of Electronic Science and Engineering,
National University of Defense Technology, Changsha, in 2012. From 2014 to 2018, he studied
as postdoctoral fellow at the College of Biomedical Engineering and Imaging Medicine at Army
Medical University, Chongqing. His research interest fields include pattern recognition and
machine learning.

Wang et al.: Exploring error of linear mixed model for hyperspectral image. . .

Journal of Applied Remote Sensing 036514-18 Jul–Sep 2019 • Vol. 13(3)

https://doi.org/10.1109/TIP.2013.2281405
https://doi.org/10.1080/2150704X.2015.1024892
https://doi.org/10.1109/ICIP.2014.7025137
https://doi.org/10.1561/2200000016
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
https://doi.org/10.1109/TGRS.2005.844293
https://doi.org/10.1109/TGRS.2012.2204759

