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Abstract. Our work aimed to evaluate the use of visible–near-infrared (Vis–NIR) spectroscopy
for predicting the production of leaf dry mass (LDM), as well as macro- and micronutrients
contents of soybean leaves grown after application of limestone-mining coproducts. The treat-
ments were arranged within a triple factorial scheme (6 × 2 × 2þ 2) and placed into pots in a
greenhouse. We evaluated the following factors: type of input (limestone-mining coproducts),
input particle size (filler and powder), and soil class (Arenosol and Ferralsol). After inputs incu-
bation, the soybean was sown. Then, 42 days after sowing, we collected the foliar spectra, as well
as leaves, for further analysis of the contents of macro- and micronutrients in leaves and pro-
duction of LDM. We managed to adjust models at the stage of prediction with R2

p > 0.50 and
RPDp > 1.50 for the variables LDM, P, K, Mg, S, and Zn, with emphasis on the first four, which
presented R2

p above 0.65. Therefore, we conclude that Vis–NIR spectroscopy has a potential for
predicting LDM and the nutrients contents of soybean subjected to the application of limestone-
mining coproducts, with advantages such as speed, low cost, and no use of reagents that are toxic
to the environment. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.044505]
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1 Introduction

Soybean cultivation is an important source of protein for humans and animals. Brazil is the
second largest producer of soybeans and the largest exporter in the world.1 In 2019, the country
was responsible for producing 115 million tonnes.2 Considering the importance of soybean for
the world’s economy, collecting information throughout cultivation is indispensable when it
comes to trade planning, as well as local and global supply.

During their development, soybean plants require high amounts of nutrients that are provided
by fertilizers. Overall, fertilization is done with soluble fertilizers, which, despite their high
agronomic efficiency in making nutrients available rapidly, have some disadvantages such as
high costs3 and low residual effect. In addition, when used in high amounts, they may cause
environmental problems, such as eutrophication of rivers and groundwater.4 Thus, searching
for alternative inputs containing soluble minerals that release nutrients to the plant, such as rock
powder, remineralizers, or mining coproducts, has become increasingly common. The drawback
when it comes to using these sources is related to the quantification, in the soil and in the plant, of
the nutrients released by the latter. This process of analysis is the same for all soluble fertilizers,
and it results in additional costs, which makes such sources an unappealing option.

Currently, determining the leaf nutrients contents released by alternative inputs is done using
routine analyses, which are destructive and they use reagents that are usually toxic. Furthermore,
they are costly and time-consuming.5 These characteristics often make it impossible to correct
the nutrition of plants of annual cycle, such as soybean. In this context, the application of
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hyperspectral sensing using visible–near-infrared (Vis–NIR) sensor could be helpful in deter-
mining the leaf nutrients contents in soybean. The Vis–NIR spectroscopy is commonly used
as a remote, non-destructive method for rapid analysis of many attributes of fresh leaves.
Vis is the region where photosynthetic pigments, such as carotenoids, chlorophylls, and xan-
thophyll, absorb strongly. However, the reflection in NIR is dominated by structural reflection
of turgid plant cells of the mesophyll.6 The use of Vis–NIR spectroscopy can assist in the
evaluation of applications of alternative inputs since it is a clean and non-destructive way of
evaluating the structural and morphological characteristics of leaves, among other parts of plants.
Furthermore, due to the ease of data acquisition and processing, it allows application in areas
with precision agriculture, having seen the large number of samples demanded in this type of
agriculture.

Several studies have demonstrated the potential of this tool for predicting attributes such
as water contents in the crops,7 productivity,8 pigment levels,9,10 vegetation index,11 and leaf
nutrients contents,12 such as N,5,13 P,11,13 K,11,13,14 Ca,13,15 and Mg.13,15 However, studies on the
use of this technique for the prediction of nutrients in soybean (especially micronutrients) are
scarce. This is due to the complexity of nutritional functions and the number of plant chemical
compounds, which makes the estimation of leaf nutrients by means of reflectance Vis–NIR a
procedure with difficulties in autocorrelation and collinearity.9,16 The difficulty is even greater in
the case of micronutrients, which although they have an essential function in the development of
plants, they are present in minor quantities.

In case of nutritional deficiency, the production of leaf dry mass (LDM) can be impaired due
to loss of structural, enzymatic, and photosynthetic compounds that are essential for forming
a vigorous plant. That way, variability in the production can occur at any time due to nutritional
factors. Therefore, it becomes fundamental to understand the plant’s response to a certain factor
and correlate that answer to the spectral response obtained from its leaves. Understanding the
patterns of leaves spectral behavior allows creating models of plant productivity estimate.17

Based on the potential aforementioned, we aim to solve two basic issues of current soybean
production: (I) reducing dependency on the use of soluble fertilizers (through the application of
limestone-mining coproducts) and (II) estimating LDM and leaf nutrients contents. That being
said, the aim of this study is evaluating the potential of Vis–NIR spectroscopy for predicting
macro- and micronutrients contents, as well as in the production of LDM of soybean subjected
to the application of limestone-mining coproducts.

2 Materials and Methods

2.1 Chemical and Mineralogical Characterization of the Inputs

The materials used in this study, which are here called inputs or coproducts, were collected from
a depth of 0 to 15 m in a limestone-mining area in Tietê, São Paulo, Brazil. These inputs, which
are located at different depths, were named ritmite (from Irati formation), bituminous shale (BS)
(from Irati formation), and Corumbataí formation (CF). The contents of CaO, MgO, K2O, and S
of the inputs used in this study are shown in Table 1.

Table 1 Total contents of CaO, MgO, K2O, and S found
in the inputs used in the experiment.

Inputs

CaO MgO K2O S

%

Ritmite 14.4 13.0 0.6 1.3

BS 3.5 3.2 2.2 1.6

CF 0.7 2.4 3.1 0.1
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Mineralogy of the inputs was determined through x-ray diffraction with Shimadzu XRD-
6000 equipment, in a fraction smaller than 0.074 mm, using CuKα radiation in staircase sweep,
at an interval of 2θ of 5° to 70°, with angular step of 0.02° in Bragg configuration.18 Afterward,
the results were interpreted by comparison with the reference standards contained in the powder
diffraction file.19

2.2 Chemical and Particle-Size Characterization of the Soils

To carry out the experiment, we used soil samples from the surface layer (0 to 20 cm) of a
Ferralsol and an Arenosol.20 They were collected from a native forest area in Mandaguari and
Paranavaí, PR, Brazil, respectively. After collection, the samples were ground, air-dried, and
sieved with a 1-cm sieve. For chemical and clay content characterization, the samples were dried
in an oven with forced-air circulation at 50°C until we obtained the constant mass. Then, the
samples were ground and sieved with a 2-mm sieve. Determination of P and Kþ (Mehlich-1),
Ca2þ, Mg2þ, SO4

2−, pH (water 2:1), and C organic followed the methodologies proposed by
Teixeira et al.,21 whereas Si (soluble) followed the methodology described by Korndörfer.22 The
contents of H + Al were evaluated by the pH exchange of the sample against the SMP buffer.23

After determining the elements, we calculated the sum of bases (SB ¼ Ca2þ þMg2þ þ Kþ) and
the potential capacity of cations exchange (CEC ¼ SBþ Hþ þ Al3þ), as described in Table 2.

2.3 Delineation and Experimental Procedure

The study was conducted in a greenhouse at the State University of Maringá. The treatments
were arranged within triple factorial scheme (6 × 2 × 2þ 2), randomly designed with five rep-
etitions, and placed into pots (n ¼ 130) in a greenhouse. The factors taken into account were
type of input, input particle size, and soil class. The types of input used were coproduct 1 (50%
CF + 50% ritmite), coproduct 2 (100% CF), coproduct 3 (100% ritmite), coproduct 4 (100% BS),
coproduct 5 (30% CF + 15% BS + 55% ritmite), and coproduct 6 (55% CF + 15% BS + 30%
ritmite). The two additional controls consisted of treatments in which there was no input appli-
cation, one for each soil class evaluated. The doses of coproducts 1, 3, and 5 were calculated in
accordance with the Soil Chemistry and Fertility Commission of Rio Grande do Sul and Santa
Catarina (SCFC-RS/SC),24 according to the contents of CaO of the inputs and the Ca2þ of both
soil classes since they are mainly characterized as sources of such nutrient. As for coproducts 2,
4, and 6, the doses were calculated in accordance with SCFC-RS/SC24 based on the contents of
K2O of these inputs and the Kþ of the two soil classes, for they are a material with potential to be
used as sources of that nutrient for the soil. The input particle sizes evaluated were filler (100%
smaller than 0.30 mm) and powder (100% < 2.00 mm, 70% < 0.84 mm, 50% < 0.30 mm). That
gives them a theoretical reactivity of 100% and 68%, respectively. The soil classes used were
Arenosol and Ferralsol.

The treatments with the applied amounts of K2O, CaO, MgO, and S are described in Table 3.
The coproducts doses were applied into pots containing 3.0 kg of dry soil (Ferralsol and

Arenosol). Humidity control aimed at keeping the values close to the field capacity of both soil
classes used. The pots were placed inside a greenhouse for incubation during 140 days.

Table 2 Clay content and chemical attributes of the topsoil layer (0 to 20 cm) of the Ferralsol
and the Arenosol used in the study.

Soil

Claya C pH pH H + Al Al Ca Mg CECp
b Kc Pc SO4 V

g kg−1 (H2O) (CaCl2) cmolc dm−3 mgdm−3 %

Ferralsol 770 12.4 5.2 4.4 3.42 0.30 3.18 1.99 9.04 175.5 7.3 5.57 62

Arenosol 70 7.2 5.1 4.2 1.88 0.20 0.77 0.28 3.01 31.2 2.6 2.08 38

aPipette method.
bPotential CEC.
cMehlich-1.

Rodrigues et al.: Vis–NIR spectroscopy: from leaf dry mass production estimate. . .

Journal of Applied Remote Sensing 044505-3 Oct–Dec 2020 • Vol. 14(4)



After incubation, we did the soil sampling with an auger for determining the macronutrients
Kþ and P (Mehlich-1). Afterward, fertilization recommendations were followed in order to
increase the contents of P and Kþ of the soil to the critical content of soybean (Glycine max
L.) in accordance with what is recommended by SCFC-RS/SC.24 For correcting P and Kþ, we

Table 3 Description of the treatments with the applied amounts of K2O, CaO, MgO, and S.

Inputs Particle size Soil classes

K2O CaO MgO S

kgha−1

Control Filler Ferralsol — — — —

Powder

Filler Arenosol — — — —

Powder

Coproduct 1a Filler Ferralsol 66 459 442 56

Powder

Filler Arenosol 260 1809 1740 221

Powder

Coproduct 2b Filler Ferralsol 130 30 103 4

Powder

Filler Arenosol 300 69 237 10

Powder

Coproduct 3a Filler Ferralsol 19 459 414 42

Powder

Filler Arenosol 74 1809 1630 164

Powder

Coproduct 4b Filler Ferralsol 130 208 187 94

Powder

Filler Arenosol 300 479 432 217

Powder

Coproduct 5a Filler Ferralsol 83 459 442 53

Powder

Filler Arenosol 329 1809 1742 209

Powder

Coproduct 6b Filler Ferralsol 130 310 338 42

Powder

Filler Arenosol 300 780 780 96

Powder

aDose based on the contents of CaO of the coproducts and the soil to reach the critical content of
Ca2þ > 4 cmolc dm−3.

bDose based on the contents of K2O of the coproducts and the soil to reach the critical content of
K > 90 mgdm−3.
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used triple superphosphate and coproduct 2 (CF), respectively, both applied during sowing. We
also inoculated soybean with Bradyrhizobium spp. for nitrogen fixation.

Right after application of the inputs that are sources of P and K, and after inoculation, we
sowed 10 soybean seeds (NIDERA NA5909) per vase, and when the plant reached the V1 stage,
we did the thinning, which left 4 plants per pot. A few moments before collecting the soybean
leaves, we acquired the radiometric data (reflectance) from the adaxial part of the leaves
(n ¼ 130) with the aid of an ASD leaf clip (next item). Leaves were collected 42 days after
sowing, at the V6 stage. After that, the leaves were dried in an oven with forced-air circulation
at 60°C, until constant mass. Then, we evaluated the production of LDM, as well as the contents
of N, P, K, Ca, Mg, S, Cu, Fe, Mn, and Zn. For N, at first, the tissue samples were subjected to
sulfuric digestion and, after that, the N was determined through distillation in a semi-micro
Kjeldahl device and titration with sulphuric acid (0.025 mol l−1). As for S, first came nitric-
perchloric digestion, followed by extract precipitation with BaCl2 and determination through
a UV–Vis spectrophotometer in transmittance form, in accordance with Da Silva.25 The other
nutrients were determined using an inductively coupled plasma atomic emission spectrometer.

2.4 Radiometric Data (Reflectance) of the Soybean

The radiometric scanning of the soybean leaves was done with an ASD FieldSpec 3 spectro-
radiometer operating at 350 to 2500 nm, with spectral resolution of 3 nm at 350 to 1400 nm and
30 nm at 1400 to 2500 nm [short-wave infrared (SWIR)]. Using the leaf clip allowed for col-
lecting the leaf reflectance spectra of living vegetation directly in the greenhouse (Fig. 1). For
spectra data collection, initially the spectroradiometer was optimized to adjust the sensitivity of
the instrument’s detectors according to the specific illumination conditions at the time of mea-
surement with 20 scans per white reference (Spectralon standard). Then, to achieve the relative
reflectance measurements, the white reference was collected before scanning the leaves samples
until a nice, clean, 100% reference line was obtained according to the specifications provided
by the Reflection and Calibration Laboratory.26 For each plant individual, three leaves were
measured in reflectance mode. The mean was then calculated according to recommendations
of Nanni and Demattê.27

Fig. 1 Scheme of conducting the experiment and collecting spectral data on soybean.
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2.5 Data Processing and Statistical Analysis

The results of both LDM and contents of macro- and micronutrients of the leaves were initially
subjected to descriptive statistical analysis with the Excel software—XLSTAT.28 We used The
Unscrambler 10.4 software to smoothing the reflectance (soybean leaves) data through the multi-
plicative signal correction (MSC) method in order to reduce the additive scattering effect.29 The
rationale behind MSC is to compensate for these additive effects. In addition, the preprocessing
technique MSC was selected because it has been shown to improve the performance of spec-
troscopy models. The results were centered on the mean and subjected to partial least squares
regression (PLSR)30 with the iterative algorithm NIPALS31 in order to estimate of LDM and
macro- and micronutrients contents of soybean leaves.

To generate the prediction models from the reflectance spectrum (Vis–NIR), we first removed
the wavelengths of marginal (350 to 379 nm), considered to be of greater noise32 and only the
wavelengths in the range between 380 and 1000 nm (Vis–NIR) were used since this range is
often employed to probe the properties of living plant leaves.6 Subsequently, spectral scanning’s
of the 130 samples were divided into two groups. The first represented 91 samples used for
generating the model (calibration), and the second represented 39 samples used for validating
(prediction) the adjusted PLSR model. These samples were randomly selected from the data set,
thus avoiding bias that could influence the model quality. The leave-one-out cross-validation
(cv) method was used as a preliminary form of predicting the soybean attributes.33 In the pre-
diction (p) process, parameters such as determination coefficient (R2), root-mean-square error
(RMSE), ratio of performance to deviation (RPD), and bias were used to evaluate quality and
accuracy of the model (Fig. 2). Rossel et al.34 and Saeys et al.35 state that the values of R2 are
classified as: R2 < 0.50 (models with poor predictions only capable of distinguishing high and
low values); R2 between 0.50 and 0.65 (models with moderate predictions that may be used for
evaluation and correlation); R2 between 0.65 and 0.80 (good prediction models that enable quan-
titative predictions; R2 between 0.80 and 0.90 (models of very good quantitative predictions);
and, finally, R2 ≥ 0.90 (excellent prediction models). Chang et al.36 and Dunn et al.37 have

Fig. 2 Flowchart of the methodology used in the PLSR.
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suggested that models with RPD values lower than 1.5 should be considered insufficient for the
majority applications, whereas models with RDP values between 1.5 and 2.0 are considered
useful in relation to the accuracy of their predictions, and models with values greater than
2.0 should be considered excellent.

3 Results

3.1 Mineralogical Characterization of the Coproducts

Figure 3 shows the peaks of x-ray diffractometry of the coproducts used in the study, in com-
pliance with Rodrigues et al.30 For ritmite [Fig. 3(a)], we verified peaks related to quartz, smec-
tite, calcite, dolomite, and pyrite. As for CF [Fig. 3(b)], the peaks identified referred to smectite,
illite, quartz, feldspar, and mica. Regarding BS [Fig. 3(c)], the peaks occurred due to quartz,
albite, mica, and pyrite. These results, in most of the cases, corroborate the available literature
on their mineralogy.38–40

3.2 Descriptive Analysis of the LDM and Nutrients Contents of Soybean

Table 4 shows the results of the descriptive analysis of LDM and the nutrients contents found in
the soybean leaves after cultivation in soil incubated with mining coproducts. The coefficient of
variation values (CV) ranged from 9.97 % for Ca and 91.02 % for Mn.

3.3 Estimation of LDM and Nutrients Contents of Soybean Using Vis–NIR
Spectroscopy

It can be noted in Fig. 4 that there was a separation between treatments evaluated when compared
to their reflectance, which allows to infer about the possibility to use the spectral curves in the
differentiation of treatments, as well as in the prediction of plants attributes (LDM and nutrients
content). In addition, absorption valleys close to 497 and 690 nm can be noted due to
chlorophyll41 and in the range of 700 to 770 nm, the reflectance sharply increases due to the

Fig. 3 X-ray diffractometry of the materials produced in limestone-mining: (a) ritmite, (b) CF,
(c) BS. ca/do = calcite and dolomite, sm = smectite, qz = quartz, fe = feldspar, py = pyrite, mi =
mica, and ab = albite.30
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fact that there is a cavity with a large reflecting surface in the sponge tissue structure in the
mesophyll.42

3.3.1 Calibration (c) and cross-validation (cv)

Table 5 shows the statistical parameters of the PLSR model for the phases of calibration and
cross-validation of the LDM and the nutrients contents of soybean that were evaluated (n ¼ 91).
The values of the parameters evaluated (R2, RMSE, RPD, and bias) fluctuated depending on the
variable studied.

We can see that, at the calibration phase (c) for nutrients N, Ca, and Cu, the models generated
were considered poor (R2

c < 0.32). For Fe and Mn variables, the models constructed were con-
sidered moderate (R2

c 0.55 to 0.60). As for nutrients Mg, S, and Zn, the models were considered
good (R2

c 0.75 to 0.79). Finally, for LDM and nutrients P and K, the models were considered
very good (R2

c 0.85). Regarding the RMSEc, the values ranged from 0.1123 g plant−1 for LDM
to 61.3624 mg kg−1 for Mn. As for bias, the values tended to be zero for all the variables.

At the cross-validation (cv) phase, we can see in Table 5 a decrease in the values of R2
cv

related to the previous phase (c), as well as an increase in RMSEcv. For N, Ca, Cu, and Mn

Fig. 4 Vis–NIR reflectance spectra raw of soybean (a) and after the preprocessing technique
(MSC) (b) for all treatments. Chl = chlorophyll.

Table 4 Descriptive analysis of the LDM production and foliar nutrients contents of soybean
subjected to the application of limestone-mining coproducts.

Attributes Minimum Median Mean Maximum CV (%)

LDMa (g plant−1) 1.90 3.57 3.52 4.43 13.84

N (g kg−1) 21.05 27.10 27.34 34.42 10.92

P (g kg−1) 0.75 1.87 2.53 6.46 60.12

K (g kg−1) 3.82 12.45 11.81 21.22 48.64

Ca (g kg−1) 7.23 10.03 10.07 12.48 9.97

Mg (g kg−1) 4.11 5.73 6.92 13.93 37.53

S (g kg−1) 1.06 1.68 1.74 3.06 20.77

Cu (mg kg−1) 0.47 5.94 6.61 47.55 68.78

Fe (mg kg−1) 1.78 81.08 80.93 158.33 43.64

Mn (mgkg−1) 59.44 115.51 163.17 729.43 91.02

Zn (mg kg−1) 15.81 29.66 33.56 90.70 47.60

aLeaf dry mass.
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variables, the models were considered poor (R2
cv < 0.45). For S, Fe, and Zn variables, the mod-

els with the R2
cv (0.55 to 0.60) were considered moderate. For Mg, the model was considered

good (R2
cv 0.70), and for LDM and the nutrients P and K, the models generated were considered

very good (R2
cv 0.80 to 0.84). With regard to the values of RMSEcv, the values ranged from

0.1418 g plant−1 for LDM to 74.8524 mg kg−1 for Mn. As for biascv, similarly to the calibration
phase, the values found were close to zero.

As for the RPD values in the calibration phase, it is noted that the models presented results
considered insufficient (<1.32) for the variables N and Ca and useful for Fe (1.56). As for the
variables LDM, P, K, Mg, S, Cu, Mn, and Zn, the models found, according to the RPD, were
considered excellent (>2.00). In the cross-validation phase, the models generated, considering
their respective RPD, were considered insufficient for N, Ca, and Fe (<1.42), useful for Mg and S
(1.85 and 1.50, respectively), and excellent for the other variables (>2.03).

The models that were adjusted to predict the nutrient contents of the plant, as well as the best
numbers of PLSR factors, were previously tested by cross-validation. Thus, the relationship
between the predictor variable (reflectance) and the predicted one (LDM and nutrient contents)

Table 5 Statistical parameters of the PLSR model for the LDM estimate and macro- and micro-
nutrients contents of soybean (n ¼ 91).

Attributes PLS factors PLSR R2 RMSE RPD BIAS

LDM (g plant−1) 10 Calibrationa 0.85 0.1123 4.33 5.3449−7

Cross validationb 0.80 0.1418 3.44 0.0023

N (g kg−1) 2 Calibration 0.32 2.2537 1.32 0

Cross validation 0.27 2.3649 1.26 −0.0015

P (g kg−1) 11 Calibration 0.85 0.5925 2.56 1.1882−6

Cross validation 0.84 0.5725 2.65 0.2106

K (g kg−1) 10 Calibration 0.85 2.2719 2.52 −7.3449−6

Cross validation 0.80 2.5833 2.22 0.0221

Ca (g kg−1) 1 Calibration 0.13 0.9214 1.08 0.0233

Cross validation 0.10 0.9721 1.03 0.1231

Mg (g kg−1) 11 Calibration 0.79 1.0496 2.47 2.7785−6

Cross validation 0.70 1.3983 1.85 −0.0120

S (g kg−1) 12 Calibration 0.79 0.1743 2.07 −7.077−7

Cross validation 0.56 0.2004 1.50 0.0091

Cu (mg kg−1) 1 Calibration 0.10 2.0123 2.26 0.0001

Cross validation 0.08 2.1434 2.12 0.0012

Fe (mg kg−1) 7 Calibration 0.60 22.6511 1.56 0

Cross validation 0.55 24.8644 1.42 0.9380

Mn (mgkg−1) 4 Calibration 0.55 61.3624 2.42 0

Cross validation 0.45 72.8524 2.03 −0.4377

Zn (mg kg−1) 9 Calibration 0.75 6.0321 2.64 0.0001

Cross validation 0.60 7.6523 2.08 −0.0391

aCalibration (c).
bCross-validation (cv).
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was better explained using the models containing 12 factors for S; 11 factors for P and Mg;
10 factors for LDM and K; 9 factors for Zn; 7 factors for Fe; 4 factors for Mn; and 2 factor
for N. As for Ca and Cu, the reliability of the model was limited since it presented only 1 factor.

3.3.2 Prediction (p)

To evaluate the capability of the PLSR models adjusted to predict LDM, as well as the nutrients
contents in the leaf, these models were tested with a set of spectral data, different from those used
for calibration and cross-validation. The scatter plot together with the results of the multivariate
statistics is present in Fig. 5 (n ¼ 39).

The R2
p values found decreased in relation to the previous phases (c) and (cv). For variables

N, Ca, Cu, Fe, and Mn, the models generated according to R2
p were considered poor (<0.24). For

variables S and Zn, the models were considered moderate due to the R2
p found (0.55 and 0.58,

respectively). For LDM, P, and Mg, the model was considered good (R2
p 0.65 – 0.70), and for K,

the model generated was considered very good (R2
p 0.80). Regarding the RMSEp, the values

obtained ranged from 0.1584 g plant−1 (LDM) to 80.5424 mg kg−1 (Mn). For bias, with the
exception of nutrients Fe and Mn, the values found were close to zero.

Fig. 5 Validation results for reference values versus predicted values for LDM and macro- and
micronutrients contents of soybean (n ¼ 39). Dotted and solid lines are for regression and 1:1,
respectively.
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As for the RPD values, it is noted that the models presented results considered insufficient
(<1.42) for the variables N, Ca, and Fe. As for the variable LDM and the other nutrients evalu-
ated, the models found, according to the RPD, varied between useful (1.5 to 2.0) and excel-
lent (>2.0).

The following are the correlation graphs between laboratory results (reference) and those
obtained via Vis–NIR spectroscopy (predicted) (Fig. 5). As already mentioned, the variables
LDM, K, Mg, Zn, S, and P were the ones with less dispersion and, consequently, better pre-
diction capacity. On the other hand, the nutrients N, Ca, Cu, Fe, and Mn were the most dispersed
and difficult to estimate.

3.4 Interpretation of Regression Coefficients (RC)

Figure 6 shows the regression coefficients of the PLSR model. We can observe regions of valleys
and peaks where the RCs had a higher weight for the model construction. In general, the impor-
tant wavelengths for the variables were close to 380 to 400 nm, 500 to 530 nm, 600 to 690 nm,
and 700 to 750 nm.

For the LDM variable, we can see peaks and valleys, resulting from higher RC, in the regions
near 400, 500, and 530 nm. For N, peaks and valleys are seen in regions near 600 and 750 nm
[Fig. 6(b)]. The variables P and K presented higher RC in wavelengths close to 400, 500, and
700 nm [Figs. 6(c) and 6(d)]. The important wavelengths selected for Ca prediction are found in
four regions, around 550 and 720 nm, [Fig. 6(e)]. For Mg, higher RC is close to 400, 500, and
680 nm [Fig. 6(f)]. For S, the highest RC occurred at 400 and 700 nm [Fig. 6(g)].

Regarding Cu, Fe, and Mn [Figs. 6(h)–6(j)], despite several wavelengths with higher weights
for the model construction, due to the low R2 values found for these nutrients (Fig. 5), the RC
found proved to be of little use. Finally, for Zn [Fig. 6(k)], higher RC was observed in regions
near 400 and 620 nm.

Table 6 describes the summary of the most responsive wavelengths according to the coef-
ficient of the PLSR regression (Fig. 6) obtained for the estimation of the variables LDM
production and nutrients contents of soybean.

4 Discussion

4.1 Descriptive Analysis of the LDM and Nutrients Contents of Soybean

The results obtained for the nutrients contents (plant) N, P, K, S, and Mn according to SCFC-RS-
SC24 were considered insufficient for the development of the crop. For Cu, Fe, and Zn, the
contents varied between insufficient and sufficient for the crop. Moreover, according to the
Pimentel-Gomes43 classification, the coefficients of variation for the evaluated variables were
classified as low for Ca, medium for LDM and N, high for S, and very high for P, K, Mg, Cu,
Fe, Mn, and Zn. These results occurred because of the sources of nutrients used, such as mining
coproducts. Due to the diversified mineralogy (Fig. 3), these coproducts provided varied input of
elements, which contributed to the high range of minimum and maximum values of the nutrient
contents. Furthermore, the use of inputs with different input particle size and solubility rates also
favoured the heterogeneity in the coefficient of variation values found.

4.2 Estimation of LDM and Nutrients Contents of Soybean Using Vis–NIR
Spectroscopy

Although the plant spectrum does not present characteristic inflections of the nutrients present
in the plants, the peaks and dips caused by chlorophyll (Fig. 4) and the high reflectance of the
NIR region typical of plants with the well-structured mesophyll44 are signs of satisfactory nutri-
tional conditions.45,46 This allowed the construction of models, such as PLSR, which have the
potential to make indirect predictions of nutrients. In addition, the production of LDM can also
be directly related to the chlorophyll and the leaves’ mesophyll,6 which allows its estimation,
as discussed below.
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Fig. 6 Coefficient of the PLSR regression model for the variables (a) LDM, (b) N, (c) P, (d) K,
(e) Ca, (f) Mg, (g) S, (h) Cu, (i) Fe, (j) Mn, and (k) Zn of soybean.
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4.2.1 Calibration (c) and cross-validation (cv)

In the calibration phase of the models for K and P elements, which showed very good R2
c (0.85),

the results are corroborated by other studies using the Vis–NIR spectroscopy that also obtained
high R2

c values for these elements in barley47 and cucumber48 plants. Although K and P may
not be directly detected when irradiated by Vis–NIR frequencies, organic compounds and other
complex plant components containing these elements can be detected and evaluated when
inspecting leaf spectra.49 Thus, the results obtained in this study demonstrate the potential of
using Vis–NIR spectroscopy as a tool to help determine the contents of these nutrients in plants.

Regarding the cross-validation phase of the PLSR data, for variables N, Ca, Cu, and Mn, the
results obtained in this study were below those achieved by Pandey et al.6 that when studying the
use of Vis–NIR spectroscopy in the prediction of nutrients in maize and soybean leaves, they
found R2

cv for N, Ca, Cu, and Mn, respectively, of 0.88, 0.75, 0.80, and 0.51. For N, this result
was not expected since it is one of the elements associated with chlorophyll,11 which therefore
interacts with electromagnetic radiation.5 For variables Mg, S, Fe, and Zn (cv), the R2

cv were
considered similar to those found by Pandey et al.,6 who obtained values of 0.69, 0.71, 0.73, and
0.64, respectively, for these nutrients. In relation to LDM, the results were similar to those of
Silva-Perez et al.,50 who found R2

cv of 0.89 for this variable in wheat culture. For P and K, the
results of R2

cv were slightly higher than the ones of Pimstein et al.,51 who studied the use of Vis–
NIR spectroscopy for predicting nutrients in maize culture and obtained R2 of P ¼ 0.46 and R2

of K ¼ 0.77. For S, the results of R2
cv were lower than those obtained by Pandey et al.,6 who

found R2
cv of 0.71 for that nutrient. In relation to Mg, these results were expected since this

nutrient is part of the structure of the chlorophyll molecule, which presents strong interaction
with electromagnetic radiation, what allows the creation of models with high R2.52 Other
nutrients such as K, Ca, Fe, Mn, Zn, and Cu, all metallic elements that exist mainly as ions
in living plant tissues, despite not presenting active spectral absorption characteristics in the
Vis–NIR region, have the ability to bind electrostatically or act as binders for larger compounds
containing carbon, what allowed relatively good PLSR models for some of them.6

The RMSEc;cv values ranged according to the analyzed variable (Table 5). For the nutrients
N, K, Ca, S, Cu, Fe, Mn, and Zn, the RMSEcv values found in this study were lower than those
of Pandey et al.,6 who obtained RMSEcv values of N ¼ 4.70 g kg−1, K ¼ 5.30 g kg−1, Ca ¼
3.50 g kg−1, S ¼ 0.68 g kg−1,Cu ¼ 160 mg kg−1, Fe ¼ 111 mg kg−1,Mn ¼ 30.1 mg kg−1, and
Zn ¼ 70.2 mg kg−1.

Another important parameter used to evaluate the calibration models is bias. For that, the
values were insignificant, indicating that there was a random point distribution around the regres-
sion line, resulting in the absence of bias.33 As an example, for the variable P, the biascv of 0.2106
in the cross-validation phase indicates that the measurements for this variable are slightly lower
than the reference values.53

4.2.2 Prediction (p)

In general, in the prediction phase (Fig. 5), the R2
p values for the evaluated variables were lower

than those found in the previous phases (calibration and cross-validation), demonstrating the

Table 6 Most responsive wavelengths selected according to regres-
sion coefficients for variables LDM and nutrients contents of soybean.

Plant
variable

Most responsive
wavelengths (nm)

Plant
variable

Most responsive
wavelengths (nm)

LDM 400, 500, 530 Ca 550, 720

N 600, 750 Mg 400, 500, 680

P 400, 500 S 400, 700

K 400, 500 Zn 400, 620
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limitation of the models to capture all data variability.33 However, the value of the biasp, with the
exception of Fe and Mn elements, was low. That shows that there was no bias adjustment in
the validation of the prediction models. The attributes that presented the best correlations
between the laboratory routine analysis and the PLSR technique were, respectively, K, Mg, P,
and LDM since the R2

p values found were between 0.65 and 0.80 and RPDp above 2.03, char-
acterizing a modelling with good (R2

p) and excellent (RPDp) adjustment. For the nutrients, the
results were similar to those of Pandey et al.,6 who found for K, Mg, and P, R2

p between 0.69 and
0.83, and, in relation to RPDp, values above 1.79. As for nutrients N, Ca, S, Cu, Fe, Mn, and Zn,
the same author found higher R2

p and RPDp values similar to those found in this study. As for S,
the results in this study were similar to those found by Cozzolino and Moron54 who obtained R2

p

of 0.65 working with leguminous crops.
Studies on P and K in other crops showed similar R2

p when using the Vis–NIR range32 and
lower when using visible, near–infrared, and short-wave infrared (Vis–NIR–SWIR)11 than the
ones found in this study. Some elements (e.g., P) have no absorption in the NIR region, but they
can be indirectly detected through their binding with organic complexes, chelates, and pigments,
such as chlorophyll.54 Also, it has been found that potassium is associated with organic acids,
especially malate.55 This makes its identification possible mainly in the wavelengths of the
NIR, which have characteristics of electromagnetic radiation absorption associated with organic
acids.56

For the LDM variable, the results of R2
p were similar to those found of Garriga et al.,57 who

found R2
p of 0.67 for forage production estimate and slightly lower than those of Tzanakakis

et al.,58 who found R2
p of 0.89 for the prediction of biomass production from forest species.

According to Pimstein et al.,51 the nutrients present inside plant tissues directly affect the devel-
opment of biomass and, consequently, affect reflectance, which may have caused good predic-
tion models for the LDM variable.

Regarding the variables N, Ca, Cu, Fe, and Mn, the R2
p found (<0.50) indicated the existence

of models with imprecise adjustments, thus harming the good prediction of plant nutrients. For
N, the results of R2

p obtained in this study were lower than the ones of Tzanakakis et al.
58 study-

ing several crops and Zhang and Li48 in an experiment with cucumber.
A factor that may have compromised the good prediction of certain nutrients was the type

of input used, in this case, mining coproducts. These materials are multi-elementary sources
that provide different nutrients to plants in different quantities (Table 4), what makes it diffi-
cult to isolate the effect of a certain nutrient. Thus, the plants showed deficiencies for some
nutrients such as N, P, K, S, and Mn, which may have presented a condition of “hidden hunger”
that interferes with the spectral curve,59 making it difficult to build the prediction model.
Furthermore, the interaction between ions also influences the nutritional condition of the plant60

and consequently its spectral response.
In relation to micronutrients, several studies have shown that calibrations generally perform

less well than those for macronutrients,61,62 as it was the case in this study. According Liao
et al.62 and Menesatti et al.,13 the NIR and Vis–NIR prediction of micronutrients may fail
mainly because of their low concentrations in the leaves. However, for the micronutrient Zn,
according to Rossel et al.34 based on R2

p, the model shows moderate prediction that may be
used for evaluation and correlation. Although Zn is a metallic ion, which does not produce
inflections or absorption characteristics in the Vis–NIR region, it can bind electrostatically
or as ligands to larger carbon-containing compounds, which enable the quantification by
Vis–NIR spectroscopy.6

In relation to the RMSEp, the variables that presented the smallest proportional values to
the units of the evaluated variables were S, Ca, LDM, and N. For these variables, the RMSEp

was below 12.5 % in relation to the average of these variables. As for S and LDM, these results
corroborate the highest R2

p found for these variables (>0.50). Other studies report similar
RMSEp values for N, P, and K in maize11 and lower for N, P, K, Ca, Mg, Fe, Mn, and Zn in
citrus13 than those obtained in this study.

Rodrigues et al.: Vis–NIR spectroscopy: from leaf dry mass production estimate. . .

Journal of Applied Remote Sensing 044505-14 Oct–Dec 2020 • Vol. 14(4)



4.3 Interpretation of Regression Coefficients (RC)

As for the RCs (Fig. 6), their interpretation is necessary to avoid possible accidental correla-
tions.63 Thus, one can better understand how each variable (wavelength) contributes to the
significant variation of the LDM estimate model and soybean nutrient contents. For the LDM
variable, high RC close to 500 nm may be related to chlorophyll41 since studies have shown that
wavelengths close to this region correlate with chlorophyll and plant nutrient concentration,64

which allows greater production of LDM.
Thus, the concentration of chlorophyll and nutrient contents are important for leaf mesophyll

development, which may have caused high RC near 750 nm. As for the N contents, the RC
obtained in this study is supported by other studies that aimed at estimating nitrogen by the
Vis–NIR spectroscopy in other crops, such as pepper65 and sugarcane.32 Concerning the vari-
ables P and K, the results of the RC found in this study are corroborated by the work of Zhang
et al.,49 who studied the use of image Vis–NIR spectroscopy to predict P and K in rapeseed crop.
Oliveira and Santana,66 when evaluating the use of Vis–NIR spectroscopy for the prediction of
nutrients in Eucalyptus, also found high RC values in the region of 400 to 900 nm for P and N,
as in this work. Both nutrients are closely related to photosynthetic traits in plants,67 which is
directly related to high RC in the Vis–NIR reflectance. Pinstein et al.51 found, in the most part of
the spectrum Vis–NIR, a correlation pattern between K and N, suggesting some cross-correlation
involving these two elements at the leaf level, which allows the creation of vegetation indices
close to these regions. In addition, other studies report the importance of wavelengths of the
green68 and red69 regions to estimate the concentration of P and K in plants.

The important wavelengths selected for Ca prediction were found in two regions (around 550
and 720 nm), according to previous research studies such as Oliveira and Santana66 studying the
Ca content in Eucalyptus. The reflectance in wavelengths near from 500 nm is associated with
active photosynthetic radiation,49 especially the role of Ca as a cofactor in the photosystem II.70

The NIR region also presented higher absolute RC values for Ca prediction. Among the functions
of Ca in higher plants are cell wall synthesis and cell membrane integrity.71 In this sense, there is a
relationship between the structural components (mesophyll) and the energy in the NIR region.42

For Mg, the largest RC near 680 nm can be related to the chlorophyll molecule since Mg
integrates it, besides being an activator of some enzymes in plants.71 Regarding S, the high val-
ues of RC at near 700 nm are supported by the work by Cozzolino and Moron,54 who found, near
this region, high correlations with S. Furthermore, wavelengths in this region have been used in
the management of S in wheat (Triticum aestivum L.).72 Finally, for Zn, the high values of RC
around 400 and 620 nm can be related to chlorophyll,41 which, in turn, can be correlated with
nutrient concentrations.64

4.4 Applications of Vis–NIR Spectroscopy as a Technique for Estimating
LDM and Nutrients Contents in Soybean

Soybean plants require significant amounts of mineral nutrients to achieve adequate growth and
productivity, and this need depends on the fertility and class of the soil. Although the mineral
nutrition of soybeans and the conventional techniques for assessing the nutritional status are
much studied, there is limited research on the use of alternative techniques to routine analysis,
such as the use of the Vis–NIR spectroscopy in predicting LDM and leaf nutrient contents.

Soybean leaves are a complex mixture of chemical compounds such as water, pigments,
carbohydrates, proteins, and others. All these compounds contribute substantially to generate
a characteristic spectrum of the target (leaves). The nutritional and physical state of the plant
(thickness and roughness) also helps to form a differentiated spectrum. In this study, the appli-
cation of mining coproducts (alternative inputs) in the soil, different in input particle size and
solubility, allowed a wide diversity of nutritional conditions, varying between better-nourished
plants and others with deficiencies (Table 4). Thus, there was a high CV for the evaluated var-
iables, which affected, in part, the creation of models with better R2

p and RPDp for certain
variables.73

Despite its limiting conditions, this study demonstrates potential use of the Vis–NIR spec-
troscopy to predict variables that presented R2

p and RPDp above 0.50 and 1.50, respectively, as it
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was the case of variables LDM, P, K, Mg, S, and Zn, with emphasis on the first four, which
presented R2

p above 0.65.
The results of this study demonstrated that a system based on a portable equipment, such as

the Vis–NIR spectrometer, can provide a better knowledge of the nutritional condition of certain
nutrients as well as estimate LDM of soybean grown after application of mining coproducts.
Because it is a fast, low-cost, and non-destructive method, Vis–NIR spectroscopy can be applied
in areas cultivated with annual crops such as soybean. Due to the ease of acquisition of this
equipment and the processing of the data, it can be used in areas with precision agriculture,
considering that this type of agriculture requires a large number of samples.74 Although there
are many studies reporting the use of the Vis–NIR–SWIR range as a technique for predicting
nutrients in plants, this work demonstrated that the use of the Vis–NIR (380 to 1000 nm) range
has the potential to generate satisfactory prediction models for several attributes of soybean
plants. This allows for the acquisition of cheaper spectroradiometers, which do not necessarily
need to operate in the SWIR range.

Finally, the positive results obtained, in this study, indicate that it may also be feasible to use
of the Vis–NIR spectroscopy to evaluate other chemical compounds present in soybean that are
important in commercialization.

5 Conclusion

The application of mining coproducts enabled a wide diversity of nutritional conditions in soy-
bean cultivation, what modified the spectral curves of the plants and contributed to the high range
of minimum and maximum values of the nutrient contents (plants).

With the use of PLSR, it was possible to adjust models in the prediction stage with R2
p

and RPDp above 0.50 and 1.50, respectively, for LDM, P, K, Mg, S, and Zn.
The contents of N, Ca, Cu, Fe, and Mn showed models with imprecise adjustments

(R2
p < 0.50), compromising the good prediction of these plant nutrients.
In general, the most important wavelengths for the construction of the PLSR model accord-

ing to the regression coefficients were close to 380 to 400 nm, 500 to 530 nm, 600 to 690 nm, and
700 to 750 nm.

The study confirms the potential of using Vis–NIR spectroscopy to predict LDM and
nutrients contents in soybean crops. Thus, Vis–NIR spectroscopy presents itself as a promising
alternative to the routine analysis of the nutritional diagnosis of plants for having advantages
such as speed, low cost, and no use of reagents that are toxic to the environment; due to the ease
of data acquisition and processing, the Vis–NIR spectroscopy allows application in areas with
precision agriculture. Further research is necessary to develop more robust models for nutrients
such as N, Ca, Cu, Fe, and Mn with control of the variation of individual nutrients.

Although there are studies reporting the use of spectroscopy as a technique for predicting
nutrients in plants, the Vis–NIR–SWIR range is used in most studies. Thus, the results found
in the present work are promising since only the Vis–NIR range was used and it was possible
to build models with good prediction for different nutrients. This allows for the acquisition of
cheaper spectroradiometers, which do not necessarily need to operate in the SWIR range.
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