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Abstract. Significant radiometric differences and weak grayscale correlations exist between opti-
cal and SAR images. As a result, there are severe spectral and spatial distortions in the fused
images. We propose a fusion method of optical and SAR remote sensing images that couples
the gain injection method and the guided filter. The proposed method is based on the fusion frame-
work of generalized intensity-hue-saturation non-subsampled contourlet transform, and the gain
injection is used for the low-frequency coefficient fusion to reduce the spectral distortion. Then,
the divergence is used as the activity measure operator to calculate the initial weight template for
the high-frequency coefficients. The guided filter is used to optimize the edge details of the initial
weight template. The fused high-frequency coefficients are obtained by weighted average.
Through comparison experiments with existing fusion methods, the results show that the proposed
method has the best quality of fusion and the proposed method has the best performance. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.16.046505]
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1 Introduction

SAR has strong penetrating power and can generate remote sensing images without being
restricted by weather and time, and the structural features of the images are apparent. However,
the lack of spectral information and severe noise make SAR image interpretation difficult.
Optical images are rich in texture and spectral information, but the imaging conditions are vol-
atile and easily obscured by clouds az.1 The pixel-level fusion of optical and SAR images can
integrate both advantages and obtain complementary information, which is of great significance
to overcoming the limitations of single-source remote sensing images and improving the inter-
pretation capability of images. The fused images of SAR and optical images have been widely
used in many fields to improve the interpretation of remote sensing images, such as land cover
classification,2,3 sea ice identification,4,5 biomass estimation,6 change detection,7,8 flood moni-
toring,9,10 and urban feature extraction and classification.11,12

Pixel-level fusion methods of optical and SAR images can be divided into four categories:
component substitution (CS) fusion methods, multi-scale decomposition (MSD) fusion methods,
hybrid methods based on CS and MSD, and model-based methods. The most used method is the
hybrid method, which integrates the advantages of both CS and MSD methods. Compared to
single methods, hybrid methods can reduce spatial structure and spectral distortion in the fused
image and are more suitable for optical and SAR image fusion.13 Hong et al. proposed a method
based on the intensity-hue-saturation (IHS) and wavelet transform. This method uses global stat-
istical features as the active measure and then achieves fusion by directly replacing sub-bands.
However, this method ignores the specificity of individual image elements and may introduce
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a large amount of noise, leading to significant spectral distortions in the fusion results.14

Subsequently, Han et al. performs IHS transform and à trous wavelet transforms on the images
to be fused and then uses local statistical parameters as activity measures to calculate the pixel-
wise fusion weight. The fusion weight estimated by this method fully considers the unique char-
acteristic of a single pixel and the influence of neighboring pixels on the central pixel. The result-
ing fused image retains more spatial structure and spectral information.15 To further reduce the
spatial distortion in the fused images, Anandhi and Valli16 calculated the fusion weights based on
non-subsampled contourlet transform (NSCT) with minimum likelihood ratio, local gradient, and
maximum edge intensity as the active measure operators, which can retain more edge and contour
features in the fused image. Kulkarni et al. used a hybrid method of the principal component
analysis (PCA) and discrete wavelet transform (DWT) transform as the base fusion framework,
calculated the fusion weights using the image element local energy as the active measure operator,
and performed a weighted average fusion of the components further to reduce the spectral dis-
tortion in the fused images.17 Zhou et al. used an adaptive IHS fusion method based on phase
coherence feature preservation to fuse SAR and optical remote sensing images, and more spectral
and spatial structure information was retained in the results.18

Although many scholars have used the hybrid method as the basic framework and contin-
uously introduced better-performing activity measure operators and improved the fusion weight
calculation method for multi-scale components, there are still two problems:

1. Because the fusion method of multi-scale component weighted averaging cannot over-
come the nonlinear radiometric differences between SAR and optical images, significant
spectral distortions are inevitable in the fusion results.

2. The noise in SAR images is serious. However, the existing multi-scale feature activity
measurement operator has poor noise immunity. The fusion weight template calculated
this way cannot effectively reduce the spatial and spectral distortions caused by noise.

Given the problems of existing fusion methods, this paper proposed a coupled gain injection
and guided filtering method for optical and SAR image fusion. The proposed method uses gen-
eralized intensity-hue-saturation non-subsampled contourlet transform (GIHS-NSCT) as the
basic fusion framework. First, GIHS extracts the luminance component I of the optical image.
NSCT then decomposes the I and SAR images into multi-scale and multi-directional. Next,
the low-frequency coefficients of I and SAR are fused using the gain injection method. The gain
injection method is used by solving the unique features of the low-frequency coefficients of the
SAR image and injecting the unique features into the low-frequency coefficients of I as gain.
Fusing only the unique features of the low-frequency coefficients of SAR images can effectively
reduce the spectral distortion.

2 Fundamental Theories and Methods

This section introduces some fundamental theories involved in the proposed fusion method,
including the GIHS ensemble method, the NSCT method, and the guided filter.

2.1 GIHS Fusion Method

GIHS extends the classical IHS method of the CS class fusion method. Compared with IHS, it
can acquire the luminance components of images with more than three channels. It does not
require forward and inverse transformation of the image color space, which is computationally
tiny and improves the fusion efficiency.19 Therefore, GIHS is widely used in image fusion,20,21

and we extend it to optical and SAR image fusion. The fused image calculation process of the
GIHS method is as follows:

EQ-TARGET;temp:intralink-;e001;116;123Fi ¼ Mi þ λðSAR − IÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;80I ¼
XB
i¼1

ωiMi; (2)
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where F;M, and SAR represent the fused image, optical image, and SAR image, respectively.
I is the brightness component of the optical image and B is the number of bands. λ and ω
represent the corresponding weights of each band of the optical image, respectively.

2.2 NSCT Method

NSCT is an image MSD method proposed by Da Cunha et al.22 It consists of the non-
subsampling pyramid filter bank (NSPFB) and the non-subsampling directional filter bank
(NSDFB). NSPFB can perform MSD of images. Its non-down sampling decomposition can
reduce the distortion of image elements caused by up-sampling and down-sampling processes
and has translation invariance. NSDFB is a multi-directional filter bank that decomposes the
image into multiple directions and preserves multi-directional detail features. The NSCT method
that coupled NSPFB and NSDFB has the advantages of multi-scale, multi-directional, and non-
down sampling.23 So NSCT is widely used in image fusion.24,25 The schematic diagram of NSCT
MSD is shown in Fig. 1.

2.3 Guided Filter

The guided filter is an edge-preserving filter based on a local linear model. It works by correcting
the noisy image with reference to the guiding image and has the properties of noise reduction
and edge retention. Therefore, guided filters are widely used to optimize fusion weight maps
in image fusion.26,27 The guiding image is the key to determining the filtering effect, which can
be the same or different from the input image but must be given in advance. The guided filter is
implemented by a sliding calculation of the local window. For a square sliding window wkof size
r × r, the linear relationship between the guiding image G and the output image O can be
expressed as

EQ-TARGET;temp:intralink-;e003;116;262Oi ¼ akGi þ bk; ∀ i ∈ wk; (3)

where ðak; bkÞ is the linearity factor of the sliding window wk. The linear coefficients are sig-
nificant, and solving for them is a least-squares optimization process. Optimization aims to solve
a set of ðak; bkÞ such that the difference between the input image window T and the output image
window O is minimized. Based on the above, the optimization objective function can be defined
as follows:

EQ-TARGET;temp:intralink-;e004;116;171Eðak; bkÞ ¼
X
i∈wk

½ðakGi þ bk − TiÞ2 þ εa2k�; (4)

where ε is the regularization parameter and ε > 0, ak and bk are calculated as

EQ-TARGET;temp:intralink-;e005;116;115ak ¼
P

i∈wk
GiTi − μkTk

r2ðσ2k þ εÞ ; (5)

Fig. 1 Decomposition framework of NSCT.
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EQ-TARGET;temp:intralink-;e006;116;723bk ¼ Tk − akμk; (6)

where μk and σ2k are the average values and variances values of G and the window wk. Tk is the
mean value of the window wk in T.

3 Proposed Fusion Method

In this section, we elaborate on the implementation process of the proposed fusion method,
including the basic framework, the rules for low-frequency coefficients, and high-frequency
coefficients fusion.

3.1 Basic Framework

We use the hybrid method of GIHS-NSCT to fuse optical and SAR images. The overall meth-
odological framework of the algorithm is shown in Fig. 2. In Fig. 2, the input optical and SAR
images have been registered using the method proposed by Yan et al.28 and can be directly used
for pixel-level fusion. GIHS-NSCT first acquires the luminance image of the optical image with
GIHS. Then the luminance and SAR images are multi-scale fused based on NSCT to obtain the
fused luminance image. Finally, the original optical and the new luminance image are fused
using GIHS. The key to determining the quality of fusion is the feature maps and fusion weight
maps corresponding to the low-frequency and high-frequency coefficients. The quality of the
feature map depends on the feature extraction method and the feature measurement used. The
key to the fusion weight map lies in the fusion weight calculation method and the activity mea-
surement operator. The main steps of the GIHS-NSCT fusion method are as follows:

1. Perform basic pre-processing of optical and SAR images, respectively, and upsample the
optical image to the exact resolution as the SAR image. Then register it with the SAR
image and crop out the joint region to get the input image Optical and SAR.

2. Use the GIHS method to obtain the luminance component I of the optical image and
adjust the grayscale range of SAR to the same as I to get SAR�.

3. Get the approximate images {LI , LSAR} of low-frequency sub-bands and the detailed
images {HI

j;k, H
SAR
l;k } of high-frequency sub-bands of I and SAR� with NSCT.

4. Calculate the feature maps {FLI , FLSAR} of the approximate image and the fusion
weight maps {PLI , PLSAR} for the gain injection and feature maps {FHI

j;k, FH
SAR
j;k } and

fusion weight maps {PHI
j;k, PH

SAR
j;k } of the detailed images.

5. Perform gain injection and take the weighted average on {LI , LSAR} and {HI
j;k, H

SAR
l;k }

according to the fusion weight to obtain Lnew and Hnew
j;k .

6. Perform inverse NSCT on Lnew and Hnew
j;k to get the fused luminance component Inew.

7. Fuse the optical image and Inew use GIHS. When fusing, λ is set to 1, and ωi is set to 1∕B.

Fig. 2 Framework of the proposed method.
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3.2 Rule for Low-frequency Coefficients

The low-frequency sub-band approximates the image, which contains the main contour features.
The low-frequency sub-bands are also crucial for determining the fused image’s spectral dis-
tortion. Therefore, considering the significant nonlinear radiometric differences between optical
and SAR images, we use the feature gain method for fusion when calculating the fused low-
frequency coefficients. The fusion is weighted only at specific features of the low-frequency sub-
band of the SAR image. The weights of the SAR image elements at non-specific features are all
0, while the weights of the optical image elements are set to 1. This fusion method can effectively
reduce the spectral distortion in the fused image caused by the nonlinear radiation difference.29

The fusion process of the low-frequency sub-band is shown in Fig. 3. The images used in Fig. 3
are rendered for easy observation.

In the fusion process, the common features of the low-frequency sub-bands of SAR and I are
firstly calculated according to the Eq. (7):

EQ-TARGET;temp:intralink-;e007;116;573FLcommon ¼ minfFLI; FLSARg: (7)

Since the low-frequency sub-bands are the approximation of the image features, we take the low-
frequency sub-bands of I and SAR directly as the feature maps, which is to let FLI ¼ LI;
FLSAR ¼ LSAR. Thus, the common feature FLcommonof the low-frequency sub-bands of I and
SAR images is calculated as follows:

EQ-TARGET;temp:intralink-;e008;116;492FLcommon ¼ minfFLI; FLSARg ¼ minfLI; LSARg: (8)

Based on Eq. (8), the peculiar features of the LF sub-band of the SAR image are given as follows:

EQ-TARGET;temp:intralink-;e009;116;448FLPSAR ¼ FLSAR − FLcommon ¼ LSAR − FLcommon: (9)

Fig. 3 Fusion process of low-frequency sub-bands.
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The method of the fused low-frequency sub-band calculated based on the feature gain injection
method is given as

EQ-TARGET;temp:intralink-;e010;116;711Lnew ¼ LI þ ρ × FLPSAR; (10)

where Lnew is the sub-band of fused low-frequency, ρ is the injection coefficient of the unique
features of the low-frequency sub-band of SAR, calculated as

EQ-TARGET;temp:intralink-;e011;116;656ρ ¼ entropyðFLPSARÞ
entropyðFLPSARÞ þ entropyðFLPIÞ ; (11)

where entropyð·Þdenotes the entropy of the corresponding image.

3.3 Rule for High-frequency Coefficients

The high-frequency sub-bands are multi-directional detailed images of the original image, rich in
details and textures. Meanwhile, the high-frequency coefficients are also crucial in determining
the degree of spatial distortion of the fused image. Therefore, when fusing high-frequency, we
introduce the image divergence, which is sensitive to the points near the texture edge, as the
feature activity metric to accurately extract and describe the point features of the high-frequency
sub-bands. The divergence of a point in the image precisely describes its degree of clustering in
the gradient field. The larger divergence value indicates a greater divergence of the point in the
gradient field and a higher probability of the point being a feature point on the edge of the
texture.30 Therefore, using divergence as the active measure in high-frequency fusion can accu-
rately describe the feature saliency of all image elements and thus acquire complete feature maps.

The NSCT method allows us to obtain detailed images of the source in multiple directions at
multiple scales. Each detailed image can be considered as a single-channel image in a two-
dimensional (2D) cartesian coordinate space, and the divergence of the image is calculated
in the gradient field. For a 2D field Uðx; yÞ, the gradient at ðx; yÞ is calculated as

EQ-TARGET;temp:intralink-;e012;116;393gradUðx; yÞ ¼ ∇Uðx; yÞ ¼
�
∂U
∂x

;
∂U
∂y

�
: (12)

For a 2D vector field, the divergence of Vðx; yÞat ðx; yÞ is formulated as

EQ-TARGET;temp:intralink-;e013;116;336divVðx; yÞ ¼ ∇Vðx; yÞ ¼ ∂V
∂x

þ ∂V
∂y

: (13)

Based on the Eqs. (12) and (13), the divergences of an image are given as

EQ-TARGET;temp:intralink-;e014;116;281divðUðx; yÞÞ ¼ ∇ð∇Uðx; yÞÞ ¼ ∂2U
∂x2

þ ∂2U
∂y2

: (14)

Since SAR images are seriously polluted by noise, there is still some noise in the speckle-filtered
SAR images, which may reduce the fusion quality. Unfortunately, according to the calculation
principle of divergence, the image divergence is the second-order image gradient, and the gra-
dient operator is not robust to the noise in the image. Therefore, the divergence is used as the
activity measure for the fusion of high-frequency sub-bands to calculate the fusion weights,
which is challenging to overcome the influence of noise on fusion quality. To address the above
problems, we utilized the guided filter in the fusion process of high-frequency sub-bands, opti-
mized the weight maps obtained from the divergence calculation, and used the strong correlation
between pixels to improve the fusion quality of detail images.31

The fusion process of high-frequency sub-bands is shown in Fig. 4. First, acquire the high-
frequency sub-bands {HI , HSAR} of SAR and I separately, and then calculate feature maps
{DivI , DivSAR} based on divergence. Second, initial weight maps {WI

0, W
SAR
0 } are determined

with the maximum divergence rule. Third, we use {HI ,HSAR} as guiding images to optimize
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initial weight maps {WI
0, W

SAR
0 } and acquire the optimized weight maps {WI

1, W
SAR
1 }. Finally,

{WI
1, W

SAR
1 } are used to fuse the detailed images of SAR and I by a weighted average method.

4 Experiment

This section introduces the datasets used in the experiments, the indicators for objective evalu-
ation of the fusion results, and the comparative analysis of the experimental results. All experi-
ments were performed using MATLAB2020a on a computer with NVIDIAQuadro P4000 GPU
and Intel Xeon W-2102 CPU.

4.1 Datasets

We arranged three sets of experiments, and the datasets used in the experiments consisted of
three groups of optical and SAR images. The datasets used in the experiments contain three
groups of optical and SAR images. In experiment 1, the main scene of the data is farmland,
which includes a scene of airborne SAR images and a scene of Google Optical images with
sub-meter resolution. In experiment 2, the main scene of the data is the city, which includes
a scene of the GaoFen-3 SAR image and a scene of the GaoFen-1 multispectral image with
meter-level resolution. In experiment 3, the main scenes of the data are mountains and lakes,
including one scene of Sentinel-1 SAR image and one scene of Landsat8 image, with 10-m level
resolution. Through three sets of experiments, the proposed algorithm’s effectiveness is verified
from multi-source, multi-scale, and multi-scene perspectives. It is worth stating that the test
images used in the experiment were completely pre-processed. The SAR images are processed
in the SARscape toolbox in ENVI, which includes import, multilooking, speckle filtering, geo-
coding, and radiometric calibration. The specific parameters of the experimental data set are
shown in Table 1.

4.2 Evaluation Metrics

To evaluate the performance of the fusion methods, root mean square error (RMSE),32 Erreur
relative globale adimensionnelle de synthèse (ERGAS),33 universal image quality index
(UIQI),34 spectral angle mapper (SAM),35 and quality with no reference (QNR)36 are used to
evaluate the quality of fusion results quantitatively. Among them, SAM measures the degree
of spectral distortion of the fusion result, and the smaller the value, the smaller the spectral
distortion. UIQI also called the Q index, measures the fused image’s correlation, luminance,
and contrast distortion. Its value ranges from [−1; 1], and a higher Q value indicates higher
image quality. RMSE measures the global spectral distortion, and the smaller the value, the

Fig. 4 Fusion process of high-frequency sub-bands.
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smaller the global spectral distortion. ERGAS can reflect the overall image quality, and the
smaller the ERGAS value of the fused image, the higher the fusion quality. QNR is a compre-
hensive evaluation index that contains two parts: spectral distortion Dλ and spatial distortionDβ.
The smaller the value of Dλ and Dβ, the smaller the spectral and spatial distortion, while the
larger the value of QNR, the higher the quality.

4.3 Experimental Results and Comparison

The comparison methods used in the experiments include the IHS37 and PCA38 methods that
belong to the CS class, the NSCT-PC39 method that belongs to the MSD class, and the IHS-
wavelet14 and the NSCT-mean40 method in the hybrid method that couples CS and MSD.

4.3.1 Subjective evaluation

The fusion results of experiment 1 are shown in Fig. 5. The IHS and PCA methods of the CS
class can inject the spatial structure information of the SAR image into the optical image more
completely. Still, simultaneously, they also cause severe spectral distortion. In contrast, the
hybrid methods can effectively reduce the spectral distortion while retaining more spatial infor-
mation. The IHS-wavelet and the NSCT-mean methods show different degrees of global bright-
ness reduction than the original optical image. NSCT-PC and the proposed method have similar

Fig. 5 Results of experiment 1. (a) S1A SAR image; (b) Landsat8 optical image; (c) IHS; (d) PCA;
(e) IHS-Wavelet; (f) NSCT-mean; (g) NSCT-PC; and (h) ours.

Table 1 Data information of the experiment.

Data no. Scene Source and type Size (pixel) GSD (m)

1 Farmland Airborne (Ka-band with VV polarization) 378 × 404 0.25

Google (RGB) 192 × 205 0.5

2 City GF-3 (C-band with HV polarization) 1159 × 1211 3

GF-1 (R G B NIR) 435 × 454 8

3 Mountain + lake Sentinel-1 (C-band with HH polarization) 875 × 1576 20

Landsat8 (SWIR1 NIR R) 583 × 1051 30

Fu et al.: Optical and SAR image fusion method with coupling gain injection and guided filtering
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results in spectral retention, while the fused image obtained by the proposed method has more
distinct features; therefore, the proposed method has the best fusion performance in experi-
ment 1.

The fusion results of experiment 2 are shown in Fig. 6. The IHS and PCA methods of the CS
class can thoroughly remove the clouds when fusing SAR and optical remote sensing images
affected by cloud occlusion. Although the direct component replacement method does not need
to take into account the information of the optical images and can thoroughly remove the
occluded clouds, it severely distorts the spectral information in the fusion results. The principle
of the CS method determines this. The direct component replacement method does not need to
consider the information of the optical image. It uses the SAR image replacement directly, which
can remove the occluded clouds, but it also severely distorts the spectral information in the fusion
result. The fusion results of the hybrid methods inject the spatial information of the SAR image
into the part occluded by the cloud in the optical image. Such methods cannot thoroughly remove
the obscured clouds but retain more spectral information and effectively inject spatial informa-
tion. Among them, the spectral preservation of the IHS-Wavelet and NSCT-mean methods are
relatively low. The spectral protection of the NSCT-PC method and the proposed method achieve
similar results. Nonetheless, since the features of NSCT-PC injection are less evident than those
of the proposed method, the fused image of the proposed method is of the highest quality in
experiment 2 in a comprehensive view.

The fusion results of experiment 3 are shown in Fig. 7. The main scenes of the experimental
data are mountains and lakes. By fusing Landsat8 and Sentinel-1 SAR images, the distinct fea-
tures in the SAR images are injected into the optical images, making fusion images rich with
structural and spectral information. In terms of structural feature integrity, the PCA and NSCT-
PC methods of injection do not achieve the expected results of the experiment. IHS, IHS-
Wavelet, NSCT-mean, and the proposed method are all capable of injecting intact, stereoscopic
structural features from SAR images into optical images. Among them, the fusion results of
NSCT-mean and the proposed method have similar results, but the mountainous features in the
fused image of the NSCT-mean are not as evident as those of the proposed method. Thus, the
proposed fusion method performs the best in experiment 3.

4.3.2 Objective evaluation

Tables 2–4 show the evaluation results of the fusion results for the three groups of experiments.
As seen from the three tables, compared with the IHS and PCA methods of the CS class, the

Fig. 6 Results of experiment 2. (a) S1A SAR image; (b) Landsat8 optical image; (c) IHS; (d) PCA;
(e) IHS-wavelet; (f) NSCT-mean; (g) NSCT-PC; and (h) ours.
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hybrid method can retain more spectral information of the optical images while injecting the
spatial information of SAR images into the optical images completely and clearly. Therefore,
the hybrid method is more suitable for fusing SAR and optical remote sensing images. SAM,
RMSE, ERGAS, Q, and Dλ can measure the spectral distortion of the fused images. From the
index results, the spectral distortion of IHS and PCA methods of the CS class is the most severe,
while the spectral distortion of the proposed method is the smallest. The evaluation results of

Fig. 7 Results of experiment 3. (a) S1A SAR image; (b) Landsat8 optical image; (c) IHS; (d) PCA;
(e) IHS-wavelet; (f) NSCT-mean; and (g) NSCT-PC; and (h) ours.

Table 2 Results of the quantitative evaluation of the methods in experiment 1.

Methods SAM RMSE ERGAS Q Dλ Dβ QNR

IHS 0.7045 42.9644 31.5469 0.4285 0.0466 0.9364 0.2462

PCA 0.0065 24.0366 28.3508 0.5028 0.0304 0.6629 0.5717

IHS-wavelet 0.2938 14.6728 10.8125 0.8911 0.0492 0.3992 0.7558

NSCTMean 0.1751 15.7895 11.6339 0.8725 0.0453 0.4543 0.7218

NSCT-PC 0.1141 4.0874 7.1397 0.9676 0.0234 0.2658 0.7170

Ours 0.0527 5.5012 4.1620 0.9380 0.0120 0.3193 0.8201

Table 3 Results of the quantitative evaluation of the methods in experiment 2.

Methods SAM RMSE ERGAS Q Dλ Dβ QNR

IHS 0.5301 87.7858 86.239 0.0256 0.0772 0.9535 0.0429

PCA 0.0478 71.5813 119.5852 0.0547 0.1224 0.1404 0.7544

IHS-wavelet 0.1229 44.1552 45.9721 0.6163 0.0522 0.1241 0.8302

NSCT-mean 0.5134 27.1348 39.0338 0.6896 0.0406 0.2014 0.7662

NSCT-PC 0.0308 11.4651 61.9446 0.8518 0.0351 0.1364 0.8332

Ours 0.0252 7.331 28.7343 0.9237 0.0127 0.0867 0.9017
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Dβ show that among the hybrid methods, IHS-wavelet and NSCT-mean have similar spatial
information retention. In contrast, the proposed method has the highest spatial information reten-
tion. In terms of the comprehensive quality of the fusion results, the evaluation of the QNR
showed that the hybrid methods have higher comprehensive qualities of the fused images than
the methods of the CS and MSD classes.

5 Conclusions

We have made improvements in two aspects to solve the problems that fused images of SAR
and optical remote sensing images often have significant spectral and spatial distortion.

1. We use gain injection to achieve fusion in the low-frequency sub-band fusion process.
Since the gain injection is performed only at the unique features of the SAR image for
feature gain injection, this effectively reduces the spectral distortion of the fused image.

2. We introduced the guide filter when fusing high-frequency sub-bands. The noise reduc-
tion features and edge preservation of the guide filter are used to optimize the fusion
weight template, effectively reducing the fused image’s spatial distortion.

A limitation of the proposed method in this paper is that it is time-consuming. Therefore,
reducing the time consumption of the fusion process will be one direction of our next research in
the future. Our experiments found that the time consumption is mainly concentrated in NSCT
MSD and reconstruction. Therefore, we will try some fast MSD methods, such as fast NSCT,41

fast finite Shearlet transform,42 etc. In addition, we plan to improve the fusion quality by using
some active metric operators that are robust to noise and nonlinear radiometric differences, such
as phase congruency features.
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