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ABSTRACT. Significance: Functional near-infrared spectroscopy (fNIRS), with its measure of
delta hemoglobin concentration, has shown promise as a monitoring tool for the
functional assessment of neurological disorders and brain injury. Analysis of fNIRS
data often involves averaging data from several channel pairs in a region. Although
this greatly reduces the processing time, it is uncertain how it affects the ability to
detect changes post injury.

Aim: We aimed to determine how averaging data within regions impacts the ability
to differentiate between post-concussion and healthy controls.

Approach: We compared interhemispheric coherence data from 16 channel pairs
across the left and right dorsolateral prefrontal cortex during a task and a rest period.
We compared the statistical power for differentiating groups that was obtained when
undertaking no averaging, vs. averaging data from 2, 4, or 8 source detector pairs.

Results: Coherence was significantly reduced in the concussion group compared
with controls when no averaging was undertaken. Averaging all 8 channel pairs
before undertaking the coherence analysis resulted in no group differences.

Conclusions: Averaging between fiber pairs may eliminate the ability to detect
group differences. It is proposed that even adjacent fiber pairs may have unique
information, so averaging must be done with caution when monitoring brain disor-
ders or injury.
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a technology that is increasingly being applied
to monitor brain function in healthy, diseased, or injured brains.1–6 As it is portable and relatively
accessible in terms of data collection and processing, and it may rival MRI for assessing brain
function in a wide range of neurological conditions including concussion. Concussion is a mild
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traumatic brain injury (mTBI) that results in altered neurological states leading to symptoms of
memory and perception deficits, headaches, and other behavioral changes.7–10 The functional
nature of these symptoms makes fNIRS an ideal method for monitoring the injury. In this paper,
we investigate fNIRS as a tool for assessing concussion.

Using fNIRS, we can detect changes in hemoglobin concentrations (oxy- and deoxy-
hemoglobin). There are said to be several frequencies/oscillations contained within this signal
that can be related to hemodynamics and metabolism in the brain.11,12 The synchronization of
these oscillations plays a part in normal brain function and can be altered following injury to
the brain. Wavelet coherence analysis has been used as a method to measure the synchroniza-
tion between brain regions.13 One method of comparing these frequencies between brain
regions is through wavelet coherence analysis. Wavelet coherence is calculated between two
or more input time series signals. First, a wavelet transform is utilized to decompose each time
series into a time-frequency signal with various frequency components, which in fNIRS are
related to various physiological processes. The time-frequency signals are then compared with
each other to determine coherence.13 We have shown previously that, when comparing healthy
controls with patients with long term symptoms after a concussion, interhemispheric coherence
is reduced in both pediatric and adult populations.14,15 Another study in hemiplegic stroke
patients found increased coherence in right and left hemiplegic patients when compared with
controls.16 Yet another study found that participants with major depression disorder had
reduced coherence compared with the control group.17 Even studies that focus on control
groups are able to determine changes in brain function during a task using this analysis
technique.18,19 These studies show promise for the use of fNIRS and signal coherence analysis
as a tool for assessing changes in control groups during a task and in neurological conditions
such as concussion.

In coherence or magnitude analysis, averaging techniques are often applied to the data from
different source detector pairs before quantifying changes in coherence or magnitude.18–20 This
has the advantage of reducing outlying or spurious data points and making the analysis less
susceptible to a source–detector pair with low signal and poor data. Thus, averaging reduces
variation. Averaging data from different source–detector pairs before undertaking coherence
analysis will also greatly reduce the time and effort involved in post-processing and analysis.
The disadvantage of averaging is that one loses spatial information.

Previous literature on concussion, using either fNIRS14,15 or EEG,21,22 has shown that the
dorsolateral prefrontal cortex (DLPFC) may be impaired after a concussion. For this reason,
we chose to study the impact of data averaging in the DLPFC.

We aimed to explore two objectives. First, we wanted to see if the observation that fNIRS
coherence was reduced in adults with long term symptoms after a concussion could be repro-
duced. This is important for validating fNIRS as a tool that can provide reproducible results
and for strengthening the conclusion that functional impairment can still exist months after a
concussion. Second, we aimed to show how grouping or averaging data from different source–
detector pairs impacts the statistical power for detecting such impairments.

2 Methods

2.1 Participant Demographics
This study was approved by the Conjoint Health Research Ethics Board of the University of
Calgary. Two groups of participants were recruited for this study. The control group included
30 participants (15M, 15F, age: 35.77� 14.77 years) who had not experienced a concussion in at
least the past year. The concussion group included 15 participants (4M, 11F, age: 42.93� 15.04

years, time since injury: 2.6� 0.91 months). Concussion participants were recruited from an
outpatient brain injury clinic at an academic hospital seen from June 2020 to March 2022.
They were referred to this brain injury clinic by practitioners in the community for treatment
of persistent post-concussive symptoms (PPCS); therefore, this concussion sample is highly
selective. Concussion was diagnosed by a medical practitioner based on the definition from the
American Congress of Rehabilitation Medicine (ACRM).7 PPCS was diagnosed by a specialist
using the ICD-10 criteria.23 All concussion participants included in this study were confirmed to
have experienced a concussion within the last 6 months (Table 1). Participants were included in
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the study if they were within 6 months of their concussion diagnosis, were currently experiencing
PPCS after their injury, were between the ages of 18 and 65 years, had no pre-existing neuro-
logical disorders, and currently were not using psychoactive drugs or medication.

2.2 Data Acquisition
We acquired fNIRS deoxygenated (Hb) and oxygenated (HbO) hemoglobin data using the NIRx
NIRScoutX (Berlin, Germany) at a sampling rate of 3.90625 Hz. The fNIRS optodes (sources
and detectors) were placed ∼30 to 40 mm apart to maximize the signal obtained from the brain.24

The optodes were placed on the scalp according to the EEG 10-20/10-5 system.25,26 This allowed
for accurate placement of the fNIRS channels on the scalp to cover the DLPFC for functional
brain mapping.26 Another set of detectors were placed ∼8 mm from the source optodes to form
the short distance channels. The optodes were arranged as shown in Fig. 2. Fiber positions on
the DLPFC were estimated using the fNIRS optodes’ location decider v2.2 with the specificity
threshold set at “30%.”27 fNIRS optodes were calibrated to ensure a good signal quality using
the calibration feature on the NIRx NIRStar software.

2.3 Task
A resting state task and a paced visual serial addition task28 (PVSAT) were completed for this
study. Participants were trained on the task before data collection began. Participants were seated
∼75 cm from a screen that projected images to identify the task to be completed. First, they
completed an 8 min rest period with the participant being asked to focus on a cross in the middle
of the screen. Next, they completed the PVSAT (Fig. 1). The PVSAT was presented in a block
design (12 blocks). Participants were given a target number (9, 10, or 11) before each task block.
For each block, they were presented with a single digit number on the screen that was replaced at
an inter-stimulus interval of 1 s. Participants were asked to add the number currently presented
on the screen to the number previously presented. If the two numbers add to the target number,
they were asked to press the “right” arrow key on the keyboard. If they do not add to the target
number, they were asked to press the “left” arrow key.

Table 1 Demographics of PPCS participants included in the study.

Age Sex Symptom score Prior mTBI Time post-injury (months)

63 M 29 4 3

42 F 36 4 3

24 M 40 6 3

42 F 47 5 3

53 M 46 47 3

57 F 14 1 3

25 M 21 14 1

52 F 45 11 3

34 F 25 13 3

63 F 35 14 3

53 F 2 7 4

57 F 57 6 3

21 F 42 7 1

43 F 46 2 2

25 F 52 12 1
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2.4 Data Analysis
Intensity data were processed using the Homer2 software package29 in MATLAB (The
Mathworks, Natick, Massachusetts) and following the steps. The intensity data recorded via the
NIRStar software were converted into the Homer2 “.nirs” format to be further processed. The
intensity data extracted from the “.nirs” file were converted to delta optical density. Movement
related artifacts were removed from the data using the Homer2 spline motion correction
algorithm29 with a Savitzky–Golay smoothing filter. Optical density data were then converted
to hemoglobin concentration using the modified Beer–Lambert law29,30 and the age-dependent
differential pathlength factor,31 and bandpass filtering (0.001 to 1.9 Hz) was performed. Next,
we performed the physiological regression of the short channels.32,33 This was done using the
equation posited by Saager and Berger with the replacement of the alpha value with the value of
the correlation between the long and short channel time series. Finally, we calculated interhemi-
spheric coherence on the time series output of the short channel regression using the MATLAB
wavelet coherence function. This function uses a Morlet wavelet as its basis for the coherence
calculation with a moving average filter to smooth across time and frequency. Although the
coherence calculation was done on the whole frequency band (0.001 to 1.9 Hz), we extracted
the coherence values between 0.01 and 0.06 Hz for further analysis.

To study the impact of averaging the interhemispheric coherence data from different channel
pairs (colored numbers in Fig. 2), we obtained data from channel pairs in the DLPFC, with eight

Fig. 1 Example of the PVSAT. The participant was given a target number and was asked to add
numbers and respond by tapping an arrow key if the numbers added to the target or not.

Fig. 2 fNIRS channel locations in the DLPFC. Sources are shown in red and detectors in blue with
the lines between them representing the channels. Short channels are indicated with the light blue
circle surrounding the source optode. The channels are numbered and color-coded to represent
the channels on either hemisphere selected for the coherence calculation when no averaging and
when two channels were averaged together. The color-coded ovals represent the four channels
averaged together on each hemisphere.
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source–detector pairs in each of the left and right DLPFC. We undertook coherence analysis in
which no channel pairs were averaged, resulting in eight coherence values from eight source–
detector pairs. We applied the same analysis to the data averaged from two nearest pairs, resulting
in four coherence values per person (colored lines in Fig. 2); four nearest pairs, resulting in
two coherence values per person (colored ovals in Fig. 2); and all eight pairs, resulting in one
coherence value per person.

2.5 Statistical Analysis
A linear mixed model was used to assess group differences (control versus concussion) based on
the coherence value with participant “id” listed as a random factor.33 Model assumptions were
verified using the “performance” package34 in RStudio (version 4.2.0),35 which reports the model
fit, collinearity, homogeneity of variance, and normality of residual and random effects. To
alleviate bias due to an unbalanced dataset, we performed a permutation test (n ¼ 1000) on
all variations of signal combinations and compared the model statistics.

The most common metric to interpret statistical models is the p-value,36 which provides
insight into whether an effect is present or, alternatively stated, whether it is “statistically
significant.”37 It provides insight into whether there is a difference between two groups, in
our case controls and concussion. The effect size is suggested to be accompanied alongside
the p-values to allow for interpretation of the strength between variables, which provides
insight into the magnitude of the effect.37–39 The magnitude of effect sizes is labeled, either
small (η2 ¼ 0.0099), medium (η2 ¼ 0.0588), or large (η2 ¼ 0.1379).39,40 Effect sizes that are
considered “small” may still be important as variances from unmeasured variables may have
decreased what might have been a medium or large effect.40 It is expected that a p-value
less than the threshold for statistical significance (p < 0.05) coupled with a medium effect
size would give confidence that the concussion group could be differentiated from the
controls.

To determine the impact of averaging, we used both the p-value and effect size as criteria
when comparing group (control versus concussion) differences. The significance of the model
effects was evaluated with the Satterthwaite approximation for degrees of freedom, an alpha
level of 0.05 was used for all statistical tests. Descriptive statistics data were calculated to show
the mean, standard deviation (SD), coefficient of variation (CV), and maximum coherence
value for each channel pair and group. All statistical analyses were performed in RStudio
(version 4.2.0).35

3 Results
We applied different averaging strategies to the hemodynamic data (e.g., HbO and Hb) during
both PVSAT and resting state. We examined which averaging strategy improved the discrimi-
nation between the control and concussion groups based on their effect size and p-values. Hb did
not show any differences in interhemispheric coherence between the groups during both PVSAT
and resting state; therefore, only HbO is explored/reported in this paper.

Table 2 shows the interhemispheric coherence during PVSAT, between similar channel pairs
when they are averaged/not averaged before calculating coherence. When no channel pairs are
averaged before calculating coherence, the mean coherence ranged from 0.36 to 0.51 in controls
and 0.35 to 0.44 in concussed participants, and the maximum values ranged from 0.54 to 0.82 in
controls and 0.43 to 0.65 in concussed participants. The CVs ranged from 0.22 to 0.33 in
controls and 0.18 to 0.29 in concussed participants. When all eight channel pairs were averaged
before calculating coherence, the coherence was 0.49 in controls and 0.45 in concussed partic-
ipants with a CV of 0.3 to 0.28, respectively. Table 3 shows similar data collected during
the resting state. The mean coherence ranged from 0.34 to 0.5 in controls and 0.31 to 0.44 in
concussed participants, and the maximum values ranged from 0.53 to 0.83 in controls and
0.45 to 0.69 in concussed participants. The CVs ranged from 0.2 to 0.4 in controls and 0.18
to 0.35 in concussed participants. When all eight channel pairs were averaged before analysis,
the coherence was 0.49 in controls and 0.46 in concussed participants with a CVof 0.25 to 0.3,
respectively.
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Table 2 Descriptive statistics of the HbO data during PVSAT. “Max” represents the maximum
value for the interhemispheric coherence data between the channel pairs (Fig. 1). “SD of Max
from mean” represents the number of SDs of the maximum coherence from the mean coherence.
The “Mean ± SD” and “CV” represent the mean, SD, and CV for the HbO interhemispheric
coherence during PVSAT. “Channel pair” represents the left- and right-side locations (Fig. 1)
of the coherence value calculations.

Averaging Channel pair Group CV Max SD of Max from mean Mean ± SD

None 1 Control 0.25 0.78 2.25 0.51 ± 0.12

None 1 Concussion 0.29 0.65 1.62 0.44 ± 0.13

None 2 Control 0.25 0.81 2.75 0.48 ± 0.12

None 2 Concussion 0.18 0.54 1.50 0.42 ± 0.08

None 3 Control 0.26 0.75 2.91 0.43 ± 0.11

None 3 Concussion 0.23 0.54 2.25 0.36 ± 0.08

None 4 Control 0.28 0.81 3.17 0.43 ± 0.12

None 4 Concussion 0.20 0.51 2.00 0.37 ± 0.07

None 5 Control 0.23 0.54 2.25 0.36 ± 0.08

None 5 Concussion 0.21 0.53 2.13 0.36 ± 0.08

None 6 Control 0.33 0.82 2.71 0.44 ± 0.14

None 6 Concussion 0.25 0.58 1.90 0.39 ± 0.1

None 7 Control 0.22 0.56 2.13 0.39 ± 0.08

None 7 Concussion 0.23 0.60 2.22 0.4 ± 0.09

None 8 Control 0.24 0.60 2.33 0.39 ± 0.09

None 8 Concussion 0.18 0.43 1.33 0.35 ± 0.06

Two 1_3 Control 0.25 0.78 2.25 0.51 ± 0.12

Two 1_3 Concussion 0.29 0.65 1.62 0.44 ± 0.13

Two 2_7 Control 0.25 0.81 2.75 0.48 ± 0.12

Two 2_7 Concussion 0.18 0.54 1.50 0.42 ± 0.08

Two 4_5 Control 0.28 0.81 3.17 0.43 ± 0.12

Two 4_5 Concussion 0.20 0.51 2.00 0.37 ± 0.07

Two 6_8 Control 0.24 0.60 2.33 0.39 ± 0.09

Two 6_8 Concussion 0.18 0.43 1.33 0.35 ± 0.06

Four 1378 Control 0.26 0.84 3.08 0.47 ± 0.12

Four 1378 Concussion 0.19 0.55 1.63 0.42 ± 0.08

Four 2456 Control 0.27 0.79 2.67 0.47 ± 0.12

Four 2456 Concussion 0.23 0.54 1.30 0.41 ± 0.1

Eight 1-8 Control 0.30 0.79 2.00 0.49 ± 0.15

Eight 1-8 Concussion 0.28 0.65 1.67 0.45 ± 0.12

Oni et al.: Impact of averaging fNIRS regional coherence data when monitoring people. . .

Neurophotonics 035005-6 Jul–Sep 2023 • Vol. 10(3)



Table 3 Descriptive statistics of the HbO data during the resting state. “Max” represents the maxi-
mum value for the interhemispheric coherence data between the channel pairs (Fig. 1). “SD of Max
from mean” represents the number of SDs of the maximum coherence from the mean coherence.
The “Mean ± SD” and “CV” represent the mean, SD, and CV for the HbO interhemispheric coher-
ence during the resting state. “Channel pair” represents the left- and right-side locations (Fig. 1) of
the coherence value calculations.

Averaging Channel pair Group CV Max SD of Max from mean Mean ± SD

None 1 Control 0.29 0.75 1.79 0.5 ± 0.14

None 1 Concussion 0.27 0.57 1.55 0.4 ± 0.11

None 2 Control 0.25 0.71 2.55 0.43 ± 0.11

None 2 Concussion 0.24 0.55 1.40 0.41 ± 0.1

None 3 Control 0.30 0.70 2.58 0.39 ± 0.12

None 3 Concussion 0.26 0.55 1.80 0.37 ± 0.1

None 4 Control 0.32 0.72 2.31 0.42 ± 0.13

None 4 Concussion 0.20 0.55 1.88 0.4 ± 0.08

None 5 Control 0.20 0.53 2.71 0.34 ± 0.07

None 5 Concussion 0.18 0.45 2.33 0.31 ± 0.06

None 6 Control 0.40 0.83 2.41 0.42 ± 0.17

None 6 Concussion 0.35 0.69 1.67 0.44 ± 0.15

None 7 Control 0.24 0.59 2.44 0.37 ± 0.09

None 7 Concussion 0.29 0.56 1.55 0.39 ± 0.11

None 8 Control 0.30 0.62 1.83 0.4 ± 0.12

None 8 Concussion 0.23 0.52 2.25 0.34 ± 0.08

Two 1_3 Control 0.29 0.75 1.79 0.5 ± 0.14

Two 1_3 Concussion 0.27 0.57 1.55 0.4 ± 0.11

Two 2_7 Control 0.25 0.71 2.55 0.43 ± 0.11

Two 2_7 Concussion 0.24 0.55 1.40 0.41 ± 0.1

Two 4_5 Control 0.32 0.72 2.31 0.42 ± 0.13

Two 4_5 Concussion 0.20 0.55 1.88 0.4 ± 0.08

Two 6_8 Control 0.30 0.62 1.83 0.4 ± 0.12

Two 6_8 Concussion 0.23 0.52 2.25 0.34 ± 0.08

Four 1378 Control 0.23 0.63 2.00 0.43 ± 0.1

Four 1378 Concussion 0.22 0.53 1.33 0.41 ± 0.09

Four 2456 Control 0.26 0.72 2.64 0.43 ± 0.11

Four 2456 Concussion 0.22 0.52 1.44 0.39 ± 0.09

Eight 1-8 Control 0.25 0.78 2.42 0.49 ± 0.12

Eight 1-8 Concussion 0.30 0.72 1.86 0.46 ± 0.14
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3.1 Channel Pair Differences
Preliminary analysis revealed that there were no groups by channel pair interactions either during
PVSAT or the resting state. Statistical differences were noted between individual channel pairs
with a medium effect size (η2 >¼ 0.058)39,40 during PVSAT [Fð7;280Þ ¼ 4.63, p < 0.001,
η2 ¼ 0.1] when no averaging was performed (Table 4) and [Fð3;120Þ ¼ 3.33, p < 0.05,
η2 ¼ 0.06] when only two channel pairs were averaged. There was no significant difference
between the channel pairs during PVSAT when observing the four channel averaged data
[Fð1;39Þ ¼ 0.25, p ¼ 0.62, η2 < 0.01]. Differences during the resting state showed similar
responses with a medium effect size [Fð7;280Þ ¼ 5.54, p < 0.001, η2 ¼ 0.12] when no aver-
aging was performed and a large effect [Fð3;120Þ ¼ 7.86, p < 0.001, η2 ¼ 0.14] when only
two channel pairs were averaged, but no effect when four channel pairs were averaged
[Fð1;40Þ ¼ 0.11, p ¼ 0.74, η2 < 0.01].

3.2 Channel Pair Averaging
We found statistical differences between groups when observing the different averaging
strategies (Table 5). It was determined that averaging all eight fibers into one amplitude-time
series before undertaking coherence analysis gives no significant difference between groups
during PVSAT [Fð1;43Þ ¼ 3.932, p ¼ 0.056, η2 ¼ 0.084] and resting state [Fð1;43Þ ¼ 0.371,
p ¼ 0.58, η2 ¼ 0.009], whereas averaging less channel pairs tends to improve the discrimina-
tion. During PVSAT, the group difference was significant with no averaging [Fð1;43Þ ¼ 8.419,
p ¼ 0.010, η2 ¼ 0.164] and when averaging two channel pairs [Fð1;43Þ ¼ 6.435, p ¼ 0.023,

Table 4 Difference between channel pairs during the resting state and PVSAT sorted by the effect
size.

Averaging Task SS DFn DFd F p Effect size

Two PVSAT 0.22 3 120 7.86 < 0.001 0.14

None PVSAT 0.35 7 280 5.54 < 0.001 0.12

None Rest 0.40 7 280 4.63 < 0.001 0.10

Two Rest 0.13 3 120 3.33 0.02 0.06

Four PVSAT 0.00 1 40 0.11 0.74 0.00

Four Rest 0.00 1 39 0.25 0.62 0.00

Table 5 Difference between groups (concussed and controls) during the resting state and
PVSAT based on the permutation test (n ¼ 1000).

Averaging Task DFd SS F p Effect size

None PVSAT 43 0.125 8.419 0.010 0.164

Two PVSAT 43 0.063 6.435 0.023 0.130

Four PVSAT 43 0.015 3.202 0.079 0.069

Eight PVSAT 43 0.013 3.932 0.056 0.084

None Rest 43 0.065 3.743 0.062 0.080

Two Rest 43 0.007 0.640 0.438 0.015

Four Rest 43 0.000 0.067 0.802 0.002

Eight Rest 43 0.001 0.371 0.580 0.009
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η2 ¼ 0.13]. Averaging four channel pairs did not show a group difference [Fð1;43Þ ¼ 3.202,
p ¼ 0.079, η2 ¼ 0.069]. Resting state analysis did not show any group differences for no
averaging [Fð1;43Þ ¼ 3.743, p ¼ 0.062, η2 ¼ 0.08], when averaging two channel pairs
[Fð1;43Þ ¼ 0.64, p ¼ 0.438, η2 ¼ 0.015], and averaging four channel pairs [Fð1;43Þ ¼ 0.067,
p ¼ 0.802, η2 ¼ 0.002]. The effect size between averaging strategies during the resting state
was small, ranging from (0.009 to 0.08), and medium to large during PVSAT (0.084 to 0.16).
With resting state and PVSAT data, the effect size was largest with no averaging.

4 Discussion
We confirmed a reduction in fNIRS HbO coherence located in the DLPFC in adults with PPCS.
This was observed in a prior study by our group.15 We also investigated the impact of averaging
channel pair data on the statistical power of coherence analysis to detect group differences.
We found that, when averaging a small number of channel pairs together (two or less), we are
better able to statistically differentiate between groups than when averaging more channel pairs
(four and eight channel pairs).

4.1 Group Differences Between Concussion and Controls

4.1.1 Identifying region of interest for group difference calculation

Cognitive deficits (e.g., in attention or memory) are known to occur post-injury in PPCS patients.
Deficits in working memory have been shown in patients with PPCS to be located within
the frontal regions of the brain.15,41–43 fNIRS provides a great tool to observe the cognitive
deficits that these patients experience as it has been shown to be sensitive to these types
of changes.15,43 Therefore, we obtained data from channel pairs placed in this region (e.g.,
DLPFC) to identify the changes that occur after the injury. In this region, we observed if aver-
aging channel pairs together changed their ability to detect differences between control and
concussion participants.

4.1.2 Impact of averaging on detecting group differences

We found that increasing the number of channel pairs averaged (above two channel pairs)
decreased the ability to distinguish the concussion group from the controls (Table 5) as averaging
both four and eight channel pairs was unable to detect group differences. This conclusion was
supported using both p-values and effect sizes. The effect size was shown to be larger when
either no channel pairs (η2 ¼ 0.27) or two channel pairs (η2 ¼ 0.20) compared with when all
channel pairs were averaged together during PVSAT (η2 ¼ 0.13). The effect size for when four
channel pairs were averaged was (η2 ¼ 0.1). The p-values also supported this conclusion. The
p-value with data collected during PVSATwas p < 0.01 for no channel pair averaging, p < 0.05

for two channel pair averaging, p ¼ 0.09 for four channel pair averaging, and p ¼ 0.05 when
averaging all channel pairs. As we average more channel pairs before calculating coherence, we
lose the ability to discriminate between the patient group and controls. This would suggest that
the use of a smaller number of channel pairs (which would also reduce data collection time)
might be ideal for fNIRS studies once the relevant regions have been identified.

4.1.3 Impact of task selection on detecting group differences

It remains unclear which task (e.g., resting state, finger-tapping) is best at differentiating con-
cussion patients using interhemispheric coherence. Prior research in the field has shown group
differences between controls and concussed populations using both an active task (e.g.,
PVSAT,44,45 finger tapping,46 visual shifting attention,2 and n-back15) and rest.47,48 In this study,
we found that an active task discriminated groups better than a resting state task. However, this
result was highly affected by the number of channel pairs that were averaged when drawing this
group comparison. As such, our results indicate that the task choice may not be as vital as post-
processing (i.e., averaging) decisions.
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4.1.4 Why is averaging reducing sensitivity?

In this study, we found that averaging more than two channel pairs had a negative effect on our
sensitivity to detecting group differences. Because averaging is a method used to reduce variation
within a dataset, a measure of variation within the data might prove useful in explaining why this
is the case. A prior study stated that observed differences in averaged data are influenced by the
amount of variation in the distributions.49 We evaluated the distribution of fNIRS data within
each averaging method using measures of dispersion/variation. For our measures of variation
within the data, we focused on the SD and CV. The SD examines the dispersion of a data
set.50 This is helpful in determining the spread of the dataset. We found that the SD of the coher-
ence data was consistent when no averaging was applied and when only two channel pairs were
averaged. It subsequently reduced when averaging four and eight channel pairs. The next mea-
sure of dispersion, CV, measures the variation of SD from the mean.51 This provides a measure of
dispersion of the data points around the mean value. We found that the CV was higher when more
channel pairs were averaged, although the individual channel pairs had a wider range of CV. Both
SD and CV were useful in describing the variation between participants and explaining the
differences that we observe between the concussion and control groups.

We observed that, during PVSAT, we could discriminate the PPCS group from controls
when using either no averaging or averaging of two channel pairs. Similar to previous work
in our lab, we found improved discrimination during an active task compared with data collected
during the resting state.14,15 These data indicate that, even in adjacent channel pairs, there could
be unique hemodynamic information that would be lost with averaging.

This paper supports the premise that fNIRS can detect changes in the brain post-concussion.
By analyzing the data on a group basis, our goal was to optimize collection and analysis pro-
tocols to improve concussion monitoring. By increasing sensitivity, this information could be
used toward optimizing protocols for individualized medicine. Continued improvements in sen-
sitivity to concussion are needed to achieve the goal of optimizing protocols for individual PPCS
assessment of treatment response, progression, and injury severity.

5 Conclusion
In this study, we confirmed that interhemispheric coherence is reduced in an adult population
with PPCS. This is an important reproducibility study as, to date, little imaging has been explored
as a marker of injury in patients with PPCS. fNIRS is portable and inexpensive, and it provides
important pathophysiological information to better understand the underpinnings of injury in
patients with PPCS.

This study contributes to the existing body of knowledge on the effects of averaging on a
dataset. With the demonstration of loss of spatial contrast due to averaging, we are extending the
knowledge of the effect of averaging on a dataset to fNIRS analysis in concussion research.

This study explores important evaluations of fNIRS analysis that impacts the field of near
infrared spectroscopy. We observed that averaging channel pairs from a region of interest
influences the ability to differentiate between groups. We hypothesize that the individual chan-
nels, even adjacent channels, may have unique information. Therefore, averaging of channel
pairs in fNIRS studies should be done with caution.
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