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Abstract. We propose a correspondence approximation approach between temporally adjacent frames for
motion analysis. First, energy map is established to represent image spatial features on multiple scales
using Gaussian convolution. On this basis, energy flow at each layer is estimated using Gauss–Seidel iteration
according to the energy invariance constraint. More specifically, at the core of energy invariance constraint is
“energy conservation law” assuming that the spatial energy distribution of an image does not change significantly
with time. Finally, energy flow field at different layers is reconstructed by considering different smoothness
degrees. Due to the multiresolution origin and energy-based implementation, our algorithm is able to quickly
address correspondence searching issues in spite of background noise or illumination variation. We apply
our correspondence approximation method to motion analysis, and experimental results demonstrate its appli-
cability. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.55.4.043109]
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1 Introduction
Motion analysis is a very significant topic in computer vision
because of its demand in the area of human–computer inter-
action, video surveillance, intelligent transportation system,
and others. As motion is a time-varying quantity reflecting
the variation of an object’s status, in contrast to static image
analysis, more useful changing information is available via spa-
tial feature comparison between frames for motion analysis.1,2

Therefore, at the center of motion analysis is to represent differ-
ent motions according to their dissimilarities in space-time.
From this perspective, techniques for analyzing motion can
be divided into two categories: spatial dissimilarity-oriented
and temporal dissimilarity-oriented methods.

To be definite, we regard spatial dissimilarity-oriented
methods as techniques focusing on exploring dissimilarities
of image features, and then combine or extend by adding
time labels for motion representation. As a good example,
Gilbert and Bowden3 proposed a dense interest points detec-
tion algorithm for human action feature extraction, which is
further temporally grouped for classification. Recently,
spatiotemporal shape template4–7 for motion representation
attracts much attention for its effectiveness; however, the tem-
plates rely strongly on spatial shape representation. Similarly,
approaches based on bag of spatiotemporal interest points8–11

has great success in the field of motion analysis for its space-
time invariance. Generally, in spite of spatial dissimilarity-ori-
ented methods being very suitable for motion representation
where spatial characteristics are obvious, they often fail to
extract adequate global relationships of motion.

In contrast, temporal dissimilarity-oriented methods tend to
first extract image features, and then focus on exploiting the
relationship and dissimilarities between motion frames. Frame

difference is a very direct and useful scheme to express motion
temporal dissimilarities. For example, in Ref. 12, motion
energy image (MEI) is built up through image difference,
based on which motion history image is formulated by fusing
MEI for human movement recognition. Moreover, optical
flow13 is another popular temporal dissimilarity-oriented
scheme by assuming brightness is constant between adjacent
frames. Inspired by optical flow, Liu and Torralba14 developed
scale-invariant feature transform (SIFT) flow using SIFT
points substituting raw pixels for dense correspondence
analysis, which is further applied for motion field prediction
and face recognition. Furthermore, Huang et al.15 presented a
correspondence map-based algorithm which can be employed
for object recognition. Generally speaking, temporal dissimi-
larity-oriented methods cover both global and local features of
motion, and many attempts have been made to address the
motion analysis problem from the perspective of image cor-
respondence approximation, as it is more accessible and appli-
cable than frame difference techniques in most cases.

Motivated by the aforementioned observations, this paper
solves the motion analysis problem by developing an image
correspondence approximation scheme called energy flow,
which can be used for dissimilarity searching in space-
time between temporally adjacent frames. Particularly, our
work first generates a multiscale energy map for image spa-
tial effective representation, which allows for image detail
preservation while extracting main features. Using energy
map, energy flow at each scale is computed by Gauss–
Seidel iteration based on the energy invariance constraint
as well as global smoothness assumption.16 Ultimately, we
reconstruct an energy flow field on different scales for accu-
rate image correspondence approximation.

The proposed scheme is capable of finding out dissimi-
larities between two images, which has great prospect in
computer vision domain. Compared with optical flow tech-
niques,13 our algorithm is more reliable and has higher
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tolerance to illumination changes since multiscale energy
rather than brightness is employed for pattern flow search-
ing. As the application for motion analysis, our approach is
very practical in contrast to SIFT flow14 and other spatialtem-
poral representation methods, for its cheap and accessible
characteristics.

The remainder of this paper is organized as follows. Sec. 2
gives an overview of related work. In Sec. 3, our energy flow
concept is introduced. Section 4 shows the motion analysis
results using energy flow. Finally, Sec. 5 concludes this
paper.

2 Related Work
As energy flow is an image correspondence-based scheme,
as well, motion analysis is a very broad topic allied closely
with image segmentation, background modeling, tracking,
object recognition, and others, we review previous work
from three aspects: image correspondence, motion detection,
and human action recognition.

2.1 Image Correspondence Approximation

Initially, Horn and Schunck16 proposed an optical flow esti-
mation method to find dense correspondence fields between
images. Optical flow is very efficient for small motions, so a
great deal of research13,17,18 following this pipeline has been
done for correspondence approximation. However, optical
flow makes the brightness constancy assumption and there-
fore fails to deal with large lighting changes, it also cannot
accurately describe the motion region if there is overlap or
noise on the brightness layer.

Another popular image correspondence technique is
SIFT,19 which matches the images using sparse points
that are robust to geometric and photometric variations on
multiple scales. SIFT flow,14 mentioned earlier, is actually
an extension of SIFT by fusing it into optical flow formu-
lation. Unfortunately, SIFT-based algorithms are either
computationally consuming or too sparse to achieve precise
correspondence approximation. To deal with these short-
comings, Tau and Hassner20 further seek to propagate
image scale information from detected interest points to
its neighboring pixels context by considering locations
where scales are detected, and then use the context for
images separately and within correlated images, which
results in more useful features for dense correspondence
while keeping the computational burden low. Similarly,
Zhang et al.21 proposed an energy flow equation by replac-
ing the brightness using image temperature features within
the Horn–Schunck optical flow framework, which is
employed for video segmentation.

Moreover, researchers present many approaches for
approximating image correspondence from other points of
view, such as Refs. 15 and 22, no matter if they work on
pixels or interest points, the dilemma between accuracy and
efficiency is challenging especially for wide-range practical
applications.

2.2 Motion Detection

Broadly speaking, existing work for motion detection can be
roughly divided into model-based and appearance-based
detections. Model-based methods detect motions by compar-
ing the target with a built model. It is ideal to directly use the

background image22 without interference as the model if the
scenario is static, but more often, using an estimated model
from a priori knowledge is more actual, e.g., Gaussian mix-
ture model (GMM)23 is proposed for dynamic model estima-
tion according to the Gaussian mixture distribution of pixels,
which is widely applied for object tracking. In a very recent
work, Haines and Xiang24 further used a Dirichlet process
GMM to provide a per-pixel density estimate for background
computation. Model-based techniques are quick, but rely
strongly on the established model. Appearance-based
approaches pay more attention to learn a large number of
sample features, and then accomplish motion detection by
classification, e.g., histogram of oriented gradient (HOG)25

is formulated to represent gradient features of an image,
according to which, pedestrians can be detected via support
vector machines (SVMs) framework.26 In Ref. 4, a detector
named action bank is presented for human motion detection,
and on this basis, motion can be accurately localized through
SVMs. Tamrakar et al.10 introduced a bag of SIFT features
for complex event detection.

2.3 Human Action Recognition

As human action is a very large-volume data digitally, the
heart of action recognition is to extract spatiotemporal
features3 to represent actions. Considering the characteristics
of action, many action descriptors have been presented, e.g.,
Derpanis et al.6 developed a spatial-temporal orientation tem-
plate generated via three-dimensional Gaussian filtering on
raw raw image intensity features for reflecting the dynamics
of actions. In Ref. 7, action videos are segmented into spatio-
temporal graphs expressing hierarchical, temporal, and spatial
relationships of actions, and then a matching algorithm is for-
mulated for action recognition. Additionally, a lot of tech-
niques originated from image correspondence and motion
detection are widely applied for action recognition, e.g.,
Laptev et al.8 build a spatiotemporal bag of words (BoW)
model to represent action interest points consisting of HOG
and optical flow features. Furthermore, context of interest
points is able to be used for action representation, e.g., in
Ref. 27, the action context feature is defined as the relative
coordinates of pairwise interest points in space-time, and
then GMMs are used to describe the context distributions
of interest points.

3 Methodology
Our goal is to explore correspondence between images for
motion analysis. In this work, a temporal dissimilarity-
oriented scheme is presented while the spatial features of
images are deep extracted. Given two temporally adjacent
frames, we start from building multilayer Laplacian stacks
for both, respectively, using Gaussian kernel convolution
implementation, and energy map is further established for
image feature extraction. We compute the energy flow
between two energy maps based on the energy invariance
constraint, and energy flow field is reconstructed to approxi-
mate the correspondence.

3.1 Energy Map

To exploit the local features of an image, the first step of our
algorithm is to represent an image I on multiple scales
employing Laplacian stacks. Let GðσÞ denote a two-dimen-
sional normalized Gaussian kernel with standard deviation σ,
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and let � denote the convolution operator, the image I
can be decomposed into a m-scale (m ≥ 1) descriptor
fLSðIÞj0 ≤ S ≤ mg, where

EQ-TARGET;temp:intralink-;e001;63;719LSðIÞ ¼
�
I − I � GðσÞ if S ¼ 0

I � GðσSÞ − I � GðσSþ1Þ if S > 0
: (1)

Despite the fact that Laplacian stacks are able to find out
full details as its origin at multiresolution processing, for
each subband, it is band limited.28 Therefore, in order to
describe an image more accurately with fewer noises by con-
sidering the dissimilarity between different scales, a rectifi-
cation process is implemented in our work. Based on the
Laplacian stacks, and inspired by power maps proposed in
Refs. 22 and 28, we establish our energy map according
to the absolute value of Laplacian coefficients because the
variation produced by difference of Laplacian stacks rather
than its orientation is the point of our concern. For I on the
S’th scale, we define the transfer energy as

EQ-TARGET;temp:intralink-;e002;63;543TSðIÞ ¼ ln jLSðIÞj � GðσSþ1Þ: (2)

Here, we transform the absolute value of Laplacian coef-
ficients into logarithmic domain. Since the value of jLSðIÞj at
many pixels is 0, which brings infinitely small quantity
impacting the following computation, we make the following
revision:

EQ-TARGET;temp:intralink-;e003;63;456T 0
SðIÞ ¼ ln jL 0

SðIÞj � GðσSþ1Þ; (3)

where

EQ-TARGET;temp:intralink-;e004;63;413jL 0
SðIÞj ¼

� jLSðIÞj if jLSðIÞj ≠ 0

1 if jLSðIÞj ¼ 0
: (4)

Then we continue to define the energy map considering
both the absolute value of LSðIÞ and the exponent of
weighted transfer energy:

EQ-TARGET;temp:intralink-;e005;63;340ESðIÞ ¼ jLSðIÞjeλT 0
SðIÞ; (5)

where λ is an adaptable parameter. Since the revision process
adds noises to eλT

0
SðIÞ by conserving zeros of jLSðIÞj, we fur-

ther modify it using PSðIÞ:

EQ-TARGET;temp:intralink-;e006;63;273PSðIÞ ¼
�
eλT

0
SðIÞ if jeλT 0

SðIÞ − eλρj > ϵ
0 else

; (6)

where ϵ is the infinitely small quantity, and ρ is a parameter
determined by image quality.

Finally, energy map is built up as follows:

EQ-TARGET;temp:intralink-;e007;326;741ESðIÞ ¼ jLSðIÞjPSðIÞ: (7)

Thus, we can conclude that our energy map is essentially
the multilayer Laplacian energy stacks for action spatial fea-
ture extraction. Figure 1 shows an example of energy map, it
is worth noting that the four layers of energy map are dis-
played with the same size in spite of actually every backward
layer decreases into one-fourth with respect to its forward
layer. Additionally, it is worth noting that σ is set as 2, m
is chosen as 4, λ is selected as −0.3, and ρ ranges from
−2 to −0.5 in our work which are practically proven to
work well.

3.2 Energy Flow

To extract temporal features between frames, we regard
motion as the apparent motion of the energy. Therefore, as
we know, there are two smoothness assumptions13 for optical
flow computation: global smoothness16 which can produce
dense optical flow field but fail to describe boundaries
and local smoothness17 which is more robust but often results
in sparse motion description. Considering the advantage of
the energy map on depicting boundaries, and motivated by
Horn–Schunck optical flow formulation,16 we make the
assumption that the spatial energy at two continuous
times on the same scale is equal using global smoothness
assumption. Moreover and likewise, we define “energy con-
servation law” as follows: let ESðx; y; tÞ denote the energy of
a pixel ðx; yÞ of an image I at time t on the S’th scale, after a
small time interval δt at the point ðxþ δx; yþ δyÞ, we thus
define

EQ-TARGET;temp:intralink-;e008;326;397ESðx; y; tÞ ¼ ESðxþ δx; yþ δy; tþ δtÞ: (8)

Based on this assumption, we expand the above equation
using Taylor series:
EQ-TARGET;temp:intralink-;e009;326;344

ESðx; y; tÞ þ δx
∂ES

∂x
þ δy

∂ES

∂y

þ δt
∂ES

∂t
þ oð2Þ ¼ ESðx; y; tÞ; (9)

where oð2Þ denotes the first-order of infinitely small quan-
tity. Then dividing δt on both sides of Eq. (9), and as δt → 0,
we can get

EQ-TARGET;temp:intralink-;e010;326;243

∂ES

∂x
dx
dt

þ ∂ES

∂y
dy
dt

þ ∂ES

∂t
¼ 0: (10)

Here, we define the velocity of a pixel as νS ¼ ðνSx; νSyÞ
and νSx ¼ ðdx∕dtÞ, νSy ¼ ðdy∕dtÞ, so we can get the energy
flow constraint equation:

Fig. 1 An example of energy map. The first column is the initial action image, and from the second to the
fifth columns are the energy maps on four layers, respectively.
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EQ-TARGET;temp:intralink-;e011;63;752

∂ES

∂x
νSx þ

∂ES

∂y
νSy þ

∂ES

∂t
¼ 0: (11)

Then we describe energy flow using the energy flow field
descriptor νS ¼ ðνSx; νSyÞ, which can be computed by min-
imizing the following objective function:

EQ-TARGET;temp:intralink-;e012;63;685

νS ¼ argmin
νS

X
x

�
α1

���� ∂ES

∂x
νSx þ

∂ES

∂y
νSy þ

∂ES

∂t

����
2

þ α2

����� ∂νS∂x

����
2

þ
���� ∂νS∂y

����
2
��

; (12)

where α1ðα1 ≠ 0Þ and α2 are respectively the weights for
data and smoothness terms indicating the energy invariance
and global smoothness assumption.13 Likewise, the ratio
α2∕α1 is determined by the image quality.29

Utilizing the Gauss–Seidel iteration, Eq. (12) can be
solved as follows:

EQ-TARGET;temp:intralink-;e013;63;543νkþ1
Sx ¼ ν̄kSx −

∂ES
∂x ν̄kSx þ ∂ES

∂y ν̄kSy þ ∂ES
∂t�

α2
α1

	
2 þ

�
∂ES
∂x

	
2 þ

�
∂ES
∂y

	
2

∂ES

∂x
; (13)

EQ-TARGET;temp:intralink-;e014;63;487νkþ1
Sy ¼ ν̄kSy −

∂ES
∂x ν̄kSx þ ∂ES

∂y ν̄kSy þ ∂ES
∂t�

α2
α1

	
2 þ

�
∂ES
∂x

	
2 þ

�
∂ES
∂y

	
2

∂ES

∂y
; (14)

where kðk ≥ 0Þ denotes the iteration number, and in our
work, k is set as 100 to guarantee both efficiency and
accuracy.

3.3 Energy Flow Field Reconstruction

Therefore, after iteration via Eqs. (13) and (14), from the
macropoint of view, for two frames, we can get a final
energy flow field sequence abbreviated as fVS ¼
ðνkþ1

Sx ; νkþ1
Sy Þj0 ≤ S ≤ mg on multiple scales. Because for

high-pass scales, the energy map averages response over a
larger region of the image;28 to represent the details produced
by tiny variation during the time interval δt and to guarantee
the avoidance of noise simultaneously, we reconstruct energy
flow field on the velocity layer rather than on the energy map
layer for expressing image correspondence relationship
using V0, which can be computed by iteration as follows:

EQ-TARGET;temp:intralink-;e015;326;752VS ¼
�
VS if S ¼ m
VS þ Sþ1

Sþ2
VSþ1 � GðσSþ1Þ if S < m : (15)

4 Experiments
As our algorithm is an image correspondence-based scheme
for dissimilarity searching between adjacent frames, to better
reveal its performance, we test our algorithm for motion
analysis from two facets: motion detection and human action
recognition. Also, we believe that our method can be used in
more areas.

4.1 Motion Detection

We verify our algorithm for motion field prediction using
frames from ChangeDetection.NET 2014 change detection
database30 without additional processing. ChangeDetection.
Net 2014 is a very complex benchmark for event and motion
detection consisting of 31 videos depicting indoor and out-
door scenes with boats, cars, trucks, and pedestrians.

To visualize energy flow velocities, we display oriented
arrows of energy flow field from the previous frame to the
current status, and one velocity vector in 2 × 2 or
5 × 5 pixels is set to be visible and the magnifying scale fac-
tor of arrows is 5 or 10 determined by image quality. As well,
we utilize color maps to show energy flow field regions
according to the value of arctan ðν1010x ∕ν1010y Þ at each pixel,
it is worth noting that the previous frames are often not given
but can be inferred from our visualizations which reflect
motion variations.

Figure 2 gives the example results of continuous human
motion detection in a relatively static scenario, the grabbing
motion is slow, a large part of the human body is not moving,
and a small part moves slightly. From detection results, we
can see that our algorithm is able to depict moving parts
effectively with little noises and the boundaries are precisely
detected. Also, the overlap within motions is successfully
addressed.

Figure 3 gives the example results of motion detection in
the lake and highway scenarios. The lake scenario is very
challenging as it includes motions of a man driving a
boat, a black car’s motion far away from lens, and the lake
water flow. However, we deal with the case well and the main
motion variations are detected. For the highway scenario, the
motion is very quick leading to big variations, and it is shown
from the results that the motions are localized very accu-
rately, but a part of the car’s body is disregarded.

Figure 4 gives the example results of motion detection in a
shadow scenario and at night. The results of pedestrian

Fig. 2 Example results of human motion detection. Images in the top row are continuous frames with
oriented arrows describing energy flow velocities from its previous frame to the current status, and the
bottom row shows the color maps. The previous frame of the first image is not given.
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detection with shadow are promising since we are aimed at
motion detection instead of detecting pedestrians. As motion
detection at night with illumination changes, our approach is
also very robust.

As a comparison, Fig. 5 compares our method with opti-
cal flow methods of Refs. 16 and 17 using color map on
examples from ChangeDetection. Net 2014. Between two
frames of human walking with a box, the main motion
lies on wiggling of the foot behind and translation of the
upper body, and from the results, we can see that the method
of Ref. 16 cannot describe boundaries accurately and is
heavily damaged by noise; the method of Ref. 17 enlarges
the motion part and is not reliable in contrast to our approach.
Moreover, the average running time of our algorithm for 10
times is 0.039 s, compared with 17.143 and 0.918 s by

methods of Refs. 17 and 16. We implement all the
experiments in MATLAB on an i5-core PC with a 6 GB
RAM.

Moreover, to further validate our approach, we compare
its overall results with another four methods for motion
detection on ChangeDetection. Net 2014 shown in Table 1.
We select three popular metrics for evaluation: recall
(Re ¼ Ntp∕Ntp þ Nfn), false positive rate [Fpr ¼ Nfp∕
ðNfp þ NtnÞ], and precision [Pr ¼ Ntp∕ðNtp þ NfpÞ],
which are determined by the number of true positives (Ntp),
true negatives (Ntn), false positives (Nfp), and false nega-
tives (Nfn). From the comparison, we can see that our
method outperforms popular optical flow methods,16,17

and can handle real-time action detection well in contrast
to GMM23 and background modeling24 based algorithms.

Fig. 3 Example results of motion detection in the lake and highway scenarios. Images in the top row are
representative frames with oriented energy flow arrows, and the bottom row shows the corresponding
color maps.

Fig. 4 Example results of motion detection in a shadow scenario and at night. Images in the top row are
representative frames with oriented energy flow arrows, and the bottom row shows the corresponding
color maps.

Fig. 5 Example results of pedestrian detection on ChangeDetection. Net 2014 database using energy
flow and optical flow methods (respectively proposed by Horn and Mahmoudi).
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To evaluate our energy flow errors, we compute
average angular errors (AAE) of energy flow using ground-
truth sequences (“TxtRMovement,” “TxtLMovement,”
“blow1Txtr1,” “drop1Txtr1,” “roll1Txtr1,” and “roll9Txtr2”)
from University College London (UCL) database18 by averag-
ing all the AE calculated by the following equation:

EQ-TARGET;temp:intralink-;e016;63;531AE ¼ cos−1

2
4 1þ ν1010x × νx þ ν1010x × νyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðν1010x Þ2 þ ðν1010x Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν2x þ ν2y

q
3
5;

(16)

where ðνx; νyÞ denotes the velocity of ground-truth at ðx; yÞ.
As a comparison, the AAE of Refs. 16 and 17 is also shown
in Fig. 6.

4.2 Human Action Recognition

For action recognition issue, we select sequences from Kungl
Tekniska Högskolan (KTH) (2391 video clips including 6
actions performed by 25 persons)26 and human metabolome
database (HMDB) (6849 video clips divided into 51 action
categories)31 action databases. Using energy flow field
between two frames as features, we cluster 100k features
of the energy flow field descriptors using k-means algorithm
by setting k as 4000, then encode them via a BoWas depicted
in Ref. 10, and finally we classify actions under SVMs frame-
work with radial basis function kernel which is practically
demonstrated robust. For each action, same as in Refs. 26
and 31, we select 16 persons’ video clips for training and
the rest for testing on KTH, while we choose 70 video
clips for training and 30 video clips for testing on HMDB.

Figure 7 gives the confusion matrix using our method on
KTH database, and the average recognition rate (ARR)
reaches 93.65%. Table 1 compares our algorithm with
other related works.6,11,23,26 In the meanwhile, with the same
settings except using SIFT31 and optical flow features17

replacing our energy flow features, we get the ARR which
is shown in Table 2.

Table 1 Overall action detection results of different algorithms on
ChangeDetection. Net 2014 database.

Method Re Fpr Pr

Horn and Schunck16 0.68 0.030 0.56

Mahmoudi et al.17 0.69 0.022 0.65

Stauffer and Grimson23 0.62 0.025 0.60

Haines and Xiang24 0.78 0.013 0.74

Our algorithm 0.76 0.009 0.81

Fig. 6 AAE of different methods using ground-truth from UCL
database.

Table 2 ARR of different methods on KTH database.

Method ARR

Schuldt and Caputo26 71.7

Derpanis et al.6 89.34

Laptev et al.8 91.8

Iosifidis and Pitas11 92.13

SIFT + BoW 85.46

Optical flow + BoW 79.59

Our algorithm 93.65

Fig. 7 Confusion matrix of our algorithm on KTH dataset.

Table 3 ARR of different methods on HMDB database.

Method ARR

Kuehne23 23.18

Sadanand and Corso4 26.9

Cao et al.5 27.84

SIFT + BoW 21.56

Optical flow + BoW 16.87

Our algorithm 27.92
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Table 3 shows the recognition results of our approach
(ARR is 27.92%) and others26,32,33 on HMDB database.
Also we substitute energy flow using optical flow and
SIFT features for comparison, and the corresponding recog-
nition rates are also given. From experimental results, we can
see that our method is very effective.

Finally, we record different ARRs on HMDB database by
setting different parameters of m, σ, and λ in Fig. 8. We can
observe that both the standard deviation σ and the threshold λ
perform well in a limited range, which verifies that noises
would contaminate the contributing data if parameters are
too small while useful information would be omitted if
too large. Also, the layer of Laplacian stacks m should be
chosen as large as possible if the resolution of image permits.
Note that we change only one parameter’s value while set-
ting others as default in our experiments.

5 Conclusion
In this paper, we present an image correspondence frame-
work for motion analysis by estimating energy flow field
between two adjacent frames. Energy map is introduced
for image feature extraction, based on which energy invariant
constraint is proposed for energy flow calculation. The
reconstructed energy flow field considering the smoothness
degrees of multiple scales is applied for both motion field
prediction and human action recognition. A number of
experiments are carried out, and promising results are given.

Energy flow scheme is very suited for real-time motion
analysis regardless of background noise or illumination
change. However, we also find a limitation: in some cases,
we may lose a part of specific energy flow field within the
object’s boundaries due to the poor image quality. So, addi-
tional postprocessing should be considered if the whole
motion silhouette is needed. In our future work, we are
very interested in applying our approach into more computer
vision fields.
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