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Abstract. This paper studies the challenging problem of object detection using rich image and depth features.
An invariant Hough random ferns framework for RGB-D images is proposed here, which primarily consists of a
rotation-invariant RGB-D local binary feature, random ferns classifier training, Hough mapping and voting,
searches for the maxima, and back projection. In comparison with traditional three-dimensional local feature
extraction techniques, this method is effective in reducing the amount of computation required for feature extrac-
tion and matching. Moreover, the detection results showed that the proposed method is robust against rotation
and scale variations, changes in illumination, and part-occlusions. The authors believe that this method will
facilitate the use of perception in fields such as robotics. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.OE.55.9.091403]
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1 Introduction
In the field of computer vision, object detection has long
been a challenging and important task. State-of-the-art algo-
rithms deliver satisfactory results for two-dimensional images.
Nonetheless, these methods suffer from limited variation and
cluttered backgrounds.1 Highly accurate RGB-D cameras that
have recently been developed can easily provide high-quality
three-dimensional (3-D) information (color and depth infor-
mation).2 Objects can thus be examined by acquiring color
and depth information together, which is better than using
only raw color images to learn feature representations.3

In order to solve the problems of rotation and scale, part-
occlusions, and nonrigid transformations, recent RGB-D
object detectors have featured the following tools:4 feature
extraction using a rotation-invariant descriptor,5 part-based
coding scheme using the generalized Hough transform,6

feature matching using machine learning frameworks,7 and
so on.

A number of researchers have paid attention to object rep-
resentation through depth images in order to improve detec-
tion performance, such as the incorporation of information
regarding the shape and spatial geometry of objects.8 A rep-
resentative spare feature is the integration of 3-D coordinates
with the color fast feature.5 However, the computational cost
of local feature extraction and matching increases with the
number of classifiers. Hence, this paper involves the compu-
tation of a fast RBG-D local binary feature (LBF) in polar
coordinates, which have yielded remarkable results for
object categorization under challenging conditions such as
rotation variation and cluttered backgrounds. This is because
it is easier to rotate the coordinates of the descriptor at a cer-
tain polar angle relative to the patch orientation in a polar
coordinate system.

The generalized Hough transform has been successfully
adapted to the problem of part-based object detection
because it is robust against partial occlusion and slightly
deformed shapes.9 Moreover, it is tolerant to noise, and
can find multiple occurrences of a shape in the same
processing pass. Its main disadvantage is that it requires
a considerable amount of storage and extensive computation.
However, it has been reported that Hough voting efficiency
during object categorization can be improved using a highly
efficient classifier.10

With regard to invariant Hough random ferns (IHRF),11

this paper applies a random ferns classifier (RFC)12 to a
Hough transform to improve search speed and reduce the
need for a large storage space for data. Furthermore, the
Hough voting is performed in rotation-invariant Hough space,
since each support point shares a stable polar angle and scal-
able displacement related to the center of the relevant object.

This paper is structured as follows: the framework for
RGB-D object detection is presented in Sec. 2. Experimental
results, including a comparison of the proposed method with
state-of-the-art techniques, are provided in Sec. 3. The con-
tributions of this paper and ideas for future research are dis-
cussed in Sec. 4.

2 Methodology
This section describes the procedure for RGB-D object
detection based on IHRF. Figure 1 outlines the procedure
for this approach.

Figure 1 formulates the rotation-invariant and multiscale
object detection problem as a probabilistic Hough voting pro-
cedure. For this example, the IHRF is trained on images of
coffee cups (color and depth) obtained from the RGB-D
Object Dataset.13 Some positive [Fig. 1(a-1)] and negative
[Fig. 1(a-4)] samples including color and depth images
were provided for training. The depth value of the positive
samples in their modeling center should then be recorded*Address all correspondence to: Mingli Dong, E-mail: dongml@sina.com
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as d0 [Fig. 1(a-2)]. For the positive image, the system extracts
a large number of scanning windows within the color and
depth images, and forms the local coding [Fig. 1(a-3)].
Following this, the rotation-invariant LBF [Fig. 1(a-5)] is
extracted and used to train the RFC [Fig. 1(b-4)]. When pre-
sented with the image for detection, the system extracts a large
number of interest points [Fig. 1(b-1)] and computes the scale
value of the scanning windows, which is equal to the depth
value di at the time divided by the original depth value d0
[Fig. 1(b-2)]. The rotation-invariant LBF is then extracted
in these scanning windows [Fig. 1(b-3)] and used for instance
recognition [Fig. 1(b-4)]. The local scanning windows then
cast probabilistic votes containing the locations of the cent-
roid of the objects, which are collected in the voting space
[Fig. 1(b-5)]. As a visualization of this space in Fig. 1(b-6)
shows, the system searches for local maxima in the voting
space and returns the correct detection as the strongest
hypothesis. By back-projecting the contributing votes
[Fig. 1(b-7)], the system retrieves support for the hypoth-
esis in the image [Fig. 1(b-8)], and roughly separates the
location of the object from the background. All the key
steps are described in detail in subsequent sections.

2.1 Rotation-Invariant RGB-D Local Binary Feature

Random fern descriptors, also called LBF, consist of some
logical pairwise comparisons of the intensity or gradient
levels of randomly selected pixels in images.14 However,
such comparisons are not robust against rotation and scale
variations because each pairwise pixel is randomly generated
offline while remaining fixed in runtime. Therefore, a rota-
tion-invariant descriptor with a high degree of stability in
RGB-D images is defined as
EQ-TARGET;temp:intralink-;e001;63;172

fði; j; nÞ ¼
�
1 Inðxi; yiÞ > Inðxj; yjÞ
0 Inðxi; yiÞ ≤ Inðxj; yjÞ

;

dði; jÞ ¼
�
1 IDðxi; yiÞ > IDðxj; yjÞ
0 IDðxi; yiÞ ≤ IDðxj; yjÞ

; (1)

where Inðx; yÞ and IDðx; yÞ are the n’th (n ∈ ½1;16�) feature
channel15 obtained from a color image and the n’th depth

channel obtained from the depth image, respectively, with
both centered at pixel locations x and y. ðxi; yiÞ and
ðxj; yjÞ are random pairwise pixel locations, and each com-
parison returns 0 or 1. In general, the pairwise pixels S that
are chosen map an image patch to a 22S-dimensional space of
binary descriptors in each fern. According to Eq. (1), RGB-D
LBF can be computed as

EQ-TARGET;temp:intralink-;e002;326;452Fm ¼ ff1; f2; : : : ; fS; d1; d2; : : : ; dSg2; (2)

where Fm is the m’th fern and f (or d) is the i’th binary fea-
ture. Therefore, the entire set of random ferns can be denoted
by F ¼ fF1; F2; : : : ; FKg. A trade off between performance
and memory can be made by changing the number of ferns K
and their sizes S.

To achieve orientation invariance, the pairwise pixels used
in Eq. (1) can be calculated by the polar coordinates

EQ-TARGET;temp:intralink-;e003;326;344

�
x1 ¼ R1 cosðθ1 þ θmÞ
y1 ¼ R1 sinðθ1 þ θmÞ ;

�
x2 ¼ R2 cosðθ2 þ θmÞ
y2 ¼ R2 sinðθ2 þ θmÞ ;

(3)

where gradient orientations are rotated relative to the maxi-
mum gradient orientation (MGO) θm, and the polar coordi-
nates Ri and θi can be converted to Cartesian coordinates xi
and yi, respectively, by using the trigonometric functions
sine and cosine.

Note that the fixed pole is located at the center of the
image, and the fixed polar axis has the same direction as
the MGO. This allows pairwise pixels to be matched cor-
rectly under arbitrary orientation changes between the two
images. Therefore, by assigning a consistent orientation to
each LBF based on local image properties, the rotation-
invariant RGB-D LBF can be represented simply relative
to this orientation and, therefore, be rendered invariant to
image rotation. Furthermore, by reserving typical features
and reducing redundancy features, satisfactory generaliza-
tion performance and training efficiency of the classifier
are guaranteed. Figures 2(a) and 2(b) show the results of
rotation-invariant RGB-D LBF on color and depth images.

Fig. 1 An overview of training, represented by “a,” and detection, represented by “b.” (a-1) Positive sam-
ples. (a-2) Depth value recording. (a-3) Local coding. (a-4) Negative samples. (a-5) Feature extraction.
(b-1) Corner detection. (b-2) Scale transform. (b-3) Feature extraction. (b-4) RFC. (b-5) Hough voting.
(b-6) Finding local maxima in 2-D Hough space. (b-7) Back projection. (b-8) Detection results.
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2.2 Training the Random Ferns Classifier

Random ferns are of great interest in computer vision
because of their speed, parallelization characteristics, and
robustness against noisy training data. They are used for
various tasks, such as keypoint recognition and image
classification.12 When they are applied to a large number
of input vectors of the same class C, the output of each
fern is a frequency distribution histogram, which is shown
in Fig. 3. In the histogram, the horizontal axis represents
a 2S-dimensional space of binary descriptors and the vertical
axis represents the number of times the binary code appears
in class C, also called the class conditional probability
pðFi∕CÞ, where i ∈ ½1; K�.

Random ferns replace trees in random forests (RFs) with
nonhierarchical ferns and pool their answers in a naive
Bayesian manner to yield better results and improve classi-
fication rates in terms of the number of classes. As discussed
in Sec. 2.1, the set of FðθmtÞ located in a local patch with the
MGO θmt is regarded as a class. Thus, a randomly selected
patch detected in another image is assigned to the most likely
class C⁀ by calculating the posterior probability

EQ-TARGET;temp:intralink-;e004;63;322C⁀¼ argmax
k

YK
L¼1

pðFLðθmtÞ∕CkÞ: (4)

For a given a test input, one can simply apply the binary
representations to account for the ferns and look up the
corresponding probability distribution over the class label,
as shown in Fig. 3. Finally, the RFC selects the class with
the highest posterior probability as the categorized result.

RFC is a remarkable classification algorithm that randomly
selects and trains a collection of ferns. In this way, classify-
ing new inputs involves only simple lookup operations.

2.3 Probabilistic Voting on Hough Space and Back
Projection

We refer to the implicit shape model (ISM),16 which is a
well-known approach based on the generalized Hough trans-
form technique. During training, the ISM learns a model of
the distribution of spatial occurrences of local patches with
respect to the object’s center. During testing, this learned
model is used to cast probabilistic votes regarding the loca-
tion of the object’s center through the generalized Hough
transform. The ISM is represented as

EQ-TARGET;temp:intralink-;e005;326;398ISMðCÞ ¼ ½pðF∕CÞ; θmt; d�; (5)

where θmt is the MGO of the local patch and d is the dis-
placement vector from the center of the object to that of a
local patch in its polar coordinate system. As a result,
each fern in the IHRF consists of the ISM of each local
patch belonging to object class C. Note that the size of an
object used for training can be represented by a scale factor
s ¼ 1. For negative instances, the IHRF simply record their
own class labels and pseudo-displacements.

This allows the classifier to exploit the available training
data more efficiently because image patches representing the
same object but in a different configuration (i.e., rotated or
scaled) can be considered representations of the same type of
information. During classification, the IHRF use the depth
value di∕d0 to classify multiple scaled versions of the

Fig. 2 The results of rotation-invariant RGB-D LBF on (a) color and (b) depth images.

Fig. 3 Classification using an RFC, where “×” is the symbol for multiplication.
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image, which results in lower complexity. To integrate votes
coming from the scanning grid pyramid of the input image
Ω, they are accumulated into the Hough image H
EQ-TARGET;temp:intralink-;e006;63;719

H ¼ pðC∕ΩÞ ¼
X
Y∈Ω

p½C∕Fðθmd; YÞ�

¼ 1

KN

X
Y∈Ω

XK
L¼1

X
d∈D

p½FLðθmdÞ∕Ck�δd

× ðYx − Xx − Xd; Yy − Xy − YdÞ; (6)

where N is the number of displacement vectors and D rep-
resents all displacement vectors. X is an object position used
for the Hough vote, and ðXd; YdÞ is the connection vector
relative to the position ðYx; YyÞ at the given time. The sub-
scripts x and y indicate the image position in the x and y
directions, respectively. As a result, the value pðC⁀∕ΩÞ serves
as a confidence measure for hypothesis C⁀. After all the votes
are cast, a global search for the local maxima yields the posi-
tion of the center of the object as a nonparametric probability
density estimate.

In addition to their voting capabilities pertaining to the
hypothesis, the IHRF can be applied in reverse to detect
the positions of their support. The location of a local maxi-
mum encodes scale, hypothesis C⁀, and its ISM of the object.
More specifically, given the local maximum of a hypothesis
at Sm, the support for this hypothesis C⁀ is defined as the
sample set

EQ-TARGET;temp:intralink-;e007;63;439Sm ¼
[
l

fθlmd; ISMlðC⁀Þg ¼
[
l

fθlmd; p
lðF∕C⁀Þ; θlmt; d

lg;

(7)

which contains the patch entries of all local samples l that
have voted for the center Sm. By using their corresponding
voting vectors d and MGO θmd, IHRF back-projects the

original position of samples l onto the image space. In
this way, a sparse point set of positions supposedly belong-
ing to the object that had voted for the center position Sm is
obtained.

3 Experiments and Results
This experimental section evaluates our method’s perfor-
mance and compares it with that of state-of-the-art
approaches. It applies these methods to the challenging
RGB-D Object Dataset17 and adheres to the experimental
protocols and detection accuracy criteria established for
each of the datasets in previous works. All experiments
were conducted on a standard 3.2 GHz PC with 2 GB of
RAM. For IHRF, the settings were as follows: the RFC con-
sisted ofK ¼ 10 ferns, and picked S ¼ 13 pairwise pixels for
RGB-D LBF. Note that while using more ferns achieves
higher recognition rates, it also requires more memory to
store the distributions and results in a higher computational
cost.12 So, the Fern size of 10 and 13 features used for each
Fern have proved to be a good compromise in our recent
experiments.11 The RGB-D Object Dataset17 is a large data-
set of 300 common household objects, eight of which were
used for training and detection, as shown in Fig. 4.

The goal of the experiment was to assess the accuracy of
instance recognition using our method. According to the
leave-sequence-out method,17 the first experiment involved
training on the video sequences of each object, where the
camera was mounted at 30 deg and 60 deg above the horizon,
and evaluations on a 45-deg video sequence. The eight RGB-
D objects shown here formed the largest multiview dataset,
where both RGB and depth images were provided for each
view. Therefore, this part tested whether combining RGB
and depth is helpful when well-segmented or cropped images
are available.

The recall-precision curve (RPC; see Fig. 5) was gener-
ated by changing the probability threshold on the vote
strength of the hypothesis. Table 1 lists a performance

Fig. 4 Eight RGB-D objects used for training and detection. (a) Cap_1. (b) Bowl_4. (c) Flashlight_2.
(d) Flashlight_5. (e) Cereal_box_2. (f) Coffee_mug_5. (g) Soda_can_1. (h) Soda_can_6.
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comparison with the recognition results obtained by RGB,
depth, and RGB-D images, respectively.

As shown in Fig. 5 and Table 1, RGB images attained an
87.4% EER, which was better than that for depth images
(73.5%). This means that RGB images are more useful
than depth images for instance-level recognition. This result
showed that objects can easily use different textures and col-
ors to distinguish among one another. The RGB-D approach

achieved an impressive 93.7% EER for the objects, outper-
forming both RGB and depth. Hence, the most significant
conclusion is that combining RGB and depth images yields
better performance. The leave-sequence-out evaluation was
much more challenging and showed that combining shape
and visual features significantly improves accuracy.

The second part of the experiment related to a set of
quantitative experiments comparing our method with

Fig. 5 RPC on eight RGB-D objects. All curves were generated by RGB, depth and RGB-D images,
respectively. (a) Cap_1. (b) Bowl_4. (c) Flashlight_2. (d) Flashlight_5. (e) Cereal_box_2.
(f) Coffee_mug_5. (g) Soda_can_1. (h) Soda_can_6.
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other relevant algorithms, including linear support vector
machine (LinSVM),17 RF,17 Gaussian kernel SVM
(kSVM),17 RGB-D kernel descriptors,18 and hierarchical
matching pursuit.19 Table 2 shows a comparison between
the EER obtained using our method with IHRF and the
results of other methods on the RGB-D dataset. All EER
results were consistent with the first set of conclusions,
whereby RGB-D images outperformed RGB and depth
images regardless of classification technique. As can be
seen from the results, our method attained impressive detec-
tion results for RGB-D images with an EER performance of
93.7%, which presents an improvement over results of past
approaches. This situation is the same as the depth’s EER
73.5% since the use of rotation-invariant LBF. Note that the
EER of RGB images was 87.4%, which is slightly less than
the corresponding values for the fourth and the fifth meth-
ods. This was because the RFC was K ¼ 13, which refers
to a trade off between performance, and memory and com-
putational cost. If the value of K increases, performance
improves efficiently.

Some examples of multi-instance detection are shown in
Fig. 6. The results show that the RGB-D-based IHRF not
only detects the object despite partial occlusion but also
can often even deal with rotation variations and large per-
spectival changes. In Table 2, the first four methods all
take approximately more than 2.5 s to label each scene from
the RGB-D dataset, and the running time for hierarchical
matching pursuit is 0.5 s. However, our method only required
0.4 s (no less than 200 × 150 pixel resolution) for object
recognition. For conventional methods, the required amounts
of memory increase linearly with the number of samples
for each class. By contrast changing joint probability for
features in each Fern does not result in increasing memory
usage.

Table 1 Performance of RGB, depth, and RGB-D images on eight
objects in terms of recall-precision equal error rate (EER: %).

Objects RGB Depth RGB-D

Cap_1 85.1 72.6 93.3

Bowl_4 88.3 80.0 95.0

Flashlight_2 85.3 63.3 93.2

Flashlight_5 81.3 56.6 91.6

Cereal_box_2 86.7 70.1 91.6

Coffee_mug_5 87.9 77.5 93.1

Soda_can_1 91.5 83.3 95.6

Soda_can_6 93.3 84.6 96.6

Means 87.4 73.5 93.7

Table 2 Comparison of different methods on the eight datasets using
RGB, depth, and RGB-D images (EER: %).

Methods RGB Depth RGB-D

LinSVM17 59.3 32.3 73.9

RF17 59.9 45.5 73.1

kSVM17 60.7 46.2 74.8

RGB-D kernel descriptors18 90.8 54.7 91.2

Hierarchical matching pursuit19 92.1 51.7 92.8

Proposed method 87.4 73.5 93.7

Fig. 6 The detection results on RGB-D datasets including the (a) first, (b) second, and (c) third scene.
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4 Conclusions
This paper proposed a 3-D object detection method using
RGB-D images based on IHRF. It relies on a rotation-invari-
ant LBF based on RFCs that can cast probabilistic votes
within the Hough transform framework. Experiment results
show that such RGB-D-based IHRF can be efficiently used
to detect instances of classes in large, challenging images
with an accuracy that is superior to that of previous methods,
and achieves the best results. This approach also allows for
an efficient implementation in terms of time and space in
comparison with related techniques. In the future, the authors
intend to use the recognition results to improve the precision
of object segmentation.
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