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ABSTRACT

An image reconstruction algorithm based on a Wentzel–Kramers–Brillouin (WKB) approximation in the
frequency domain in terms of path integration is tested with both simulated and experimental data. The
algorithm can be used with full frequency domain data (amplitude modulation and phase shift), or partial
data (amplitude or phase shift). This algorithm reconstructs an image of photon density wave propagation
factor k without knowing the optical parameters of the background medium. Reconstruction was performed
for data sets of different modulation frequencies and different detector geometries. The reconstruction time
on a SUN-SPARC 5 station was about 5 min for images with a 1283128 pixel size. © 1997 Society of Photo-Optical
Instrumentation Engineers. [S1083-3668(97)01104-0]

Keywords NIR image reconstruction algorithm; WKB approximation; multiple scattering; random media.
1 INTRODUCTION

Researchers are still hindered by the inherent diffi-
culties in transforming near-infrared (NIR) trans-
mission and reflection data from highly scattering
random media to form images of human breast and
brain for clinical use. The central problem stems
from the fact that a major portion of the photon
transport in human tissue in the NIR or visible
wavelength range is diffusive due to strong mul-
tiple light scattering. Unlike X-ray computed to-
mography (CT), which deals with photons that
travel along the straight line of sight between
source and detector (ballistic photons), owing to
multiple scattering in the region, NIR photons
travel from source to detector within a rather large
banana-shaped region inside the tissue.1 From a set
of diffuse light intensities measured on the tissue
surface, it is much more difficult to generate a sharp
map or image of the structures inside the tissue us-
ing diffusion theory.

The possibility of using NIR light to reconstruct
the image of objects that have various optical pa-
rameters hidden in highly scattering media has re-
cently being investigated by many researchers with
the aim of using it for imaging the human body.2–12

In order to calculate the so-called weight function,
almost all these image reconstruction methods need
to know the optical parameters of a reference me-
dium, which may be difficult for practical use. Re-
cently, Feng, Zhao, and Zeng13 and Feng, Zeng, and
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Zhao14 developed a novel inverse algorithm to ad-
dress some of these problems. The algorithm is
based on a Wentzel–Kramers–Brillouin (WKB) ap-
proximation of diffusion theory.

In this paper, the results of image reconstruction
using both simulated and experimental data in a
frequency domain are presented. Reconstruction
using data of different modulation frequencies and
different source detector geometries is investigated.
The forward solutions of the diffusion equation
based on the WKB approximation in the path inte-
gral form, the inverse algorithm, and computation
procedures are described in Sec. 2. In Sec. 3, the
results of image reconstruction for infinite and fi-
nite random media as well as experimental results
in an infinite medium are presented. Section 4 con-
tains the discussion and conclusions.

2 WKB APPROXIMATION AND IMAGE
RECONSTRUCTION ALGORITHM
FOR HIGHLY SCATTERING RANDOM
MEDIA

NIR photon migration in tissue can be described by
the diffusion equation when the length scale under
consideration L is large compared with the trans-
port mean free path l051/ms8 (ms8 being the trans-
port scattering coefficient), L/l0@1:
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where f(x,t) is the diffuse photon fluence rate, c is
the speed of light in tissue, ma(x) is the position-
dependent absorption coefficient, h(x,t) represents
an isotropic light source, and D5@1/3(ma1ms8)# is
the diffusion constant.

In the case of an instantaneous pointlike light
source, h(x,t)5d(r2a)d(t), the solution of Eq. (1)
is the time domain Green’s function. For an
amplitude-modulated point source, h(x,t)5d(r
2a)exp(2ivt), the solution of Eq. (1) is the fre-
quency domain Green’s function.

The important inverse problem is how to recon-
struct the position, shape, size, and optical param-
eters, such as D and ma , of one or a few inhomoge-
neities in a random medium from measurement
signals f(r) made on the boundary or inside the
medium.

2.1 FORWARD ALGORITHM BASED ON THE
WKB APPROXIMATION

The diffusion equation (1) can be described by path
integration following the original work of
Feynman;15 the forward problem of diffusion Eq.
(1) can be obtained in both time and frequency do-
mains. The details of the path integral formula are
presented in the appendix. The forward solution in
the frequency domain for diffuse photons propa-
gating from source point a to detection point b is
given by:

f~b,a;v!5S 1
2p D ~d21/2!

AD̃ exp@2W~b,a;v!# ,

(2)

where d53 is the spatial dimension and W(b,a;v)
is given by:

W~b,a;v!5E
a

b
k~x,v!dl, (3)

where k(x,v)5(ma /D2iv/Dc)1/2 is the photon
density wave propagation vector, dl is a path ele-
ment, and the integration is performed over the
most probable diffusing path (MPDP). For a uni-
form scattering medium, the MPDP is a straight
line between source and detector [see Eq. (21)].

D̃ is the path’s density prefactor and is given by:

D̃5detS ]2S̄~b,a;t0!
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2.2 INVERSE ALGORITHM BASED ON THE
WKB APPROXIMATION

The inverse problem, determining ma(x) or ms8(x),
or both from measurements on the boundary of an
inhomogeneous tissue system such as the human
brain or breast, is a difficult problem. The difficulty
lies in the fact that in order to relate ma(x), or ms8(x),
or both inside the tissue to the measured signals
f(b,a,v) and f0(b,a,v) (corresponding to with and
without an object) at some tissue surface position b,
given the source location a on another point of the
tissue surface, one needs to know the most prob-
able diffusing path x̄(t) in a time domain, or x̄(l) in
a frequency domain (see the appendix). The exact
shape of the MPDP itself is determined by the dis-
tribution of ma(x) and ms8(x), which are unknown.
At present, there does not exist a general solution to
this fundamental problem. However, when inho-
mogeneity can be regarded as small, using the
MPDP for a homogeneous medium (straight-line
path) is a good approximation and one can seek a
perturbation solution. Equation (3) can be approxi-
mated as

W~b,a;v!5E
a

b
k~x,v!dl'k0ub2au1E

a

b
dk~x,v!dl,

(5)

where dk(x,v)5k(x,v)2k0(x,v) is the change of
complex propagation factor k due to inhomogene-
ity.

Substituting Eq. (5) in Eq. (2) and combining all
factors in the previous exponent of Eq. (2), with the
background signal defined as f0(b,a,v), the corre-
sponding equation for Eq. (2) may be approximated
as

f~b,a,v!'f0~b,a,v!expF2E
a

b
dk~x,v!dlG , (6)

where f(b,a,v) and f0(b,a,v) are signals with and
without an object, respectively. Equation (6) is a
complex and can be written as real and imaginary
parts:

ln~ uf/f0u!5real@ ln~f/f0!#52E
a

b
dkr~x,v!dl ,

(7)

and

F5imag@ ln~f/f0!#52E
a

b
dk i~x,v!dl . (8)

where F is the phase shift and dkr(x,v) and
dk i(x,v) are the real and imaginary parts of dk(x,v)
to be solved, respectively. Equations (7) and (8)
show a direct relation between the change in mea-
sured intensity signal and the changes in propaga-
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tion factor of photon density wave dkr and dk i .
From Eq. (32), the real part and imaginary parts of
dk are:

dkr5
1

A2D
~Ama

21v2/c21ma!1/2

2
1

A2D0
~Ama0

2 1v2/c21ma0!1/2, (9)

and

dk i5
1

A2D
~Ama

21v2/c22ma!1/2

2
1

A2D0
~Ama0

2 1v2/c22ma0!1/2, (10)

where ma0 and D0 are the absorption coefficient and
diffusion coefficient of the background medium
and ma and D are the absorption coefficient and
diffusion coefficient of the inhomogeneous me-
dium. Equations (9) and (10) show that dkr and dk i
are related to both the change in ma and ms8 .

To relate the signal change to the changes of ab-
sorption coefficient ma and scattering coefficient
ms8 , we can expand Eq. (6) in terms of the changes
of dma and dms8 . After expanding to the first order
of variation, the signal is related to the change in
optical parameters dma and dms8 as:

f~b,a,v!5f0~b,a,v!expF2
k0
0

2Ama0
2 1~v/c !2

3E
a

b
dma~x!dl1

k0

2D0
E

a

b
dD~x!dlG .

(11)

Equations (7), (8), and (11) are forward equations
relating the change in optical properties to the
change intensity signal and are key for the WKB
image reconstruction algorithm. Equation (11) can
be used to reconstruct the spatial maps of optical
parameters dma and dms8 , while Eqs. (7) and (8) can
be used to reconstruct the spatial maps of wave
vectors dkr and dk i . A comparison of Eqs. (7), (8),
and (11) shows that for Eqs. (7) and (8) it is not
necessary to know the optical parameters of the
background media, and that computer memory is
required for half of Eq. (11). Therefore, Eqs. (7) and
(8) are easier than Eq. (11) for practical use. We will
employ Eqs. (7) and (8) to reconstruct the image in
the following paragraphs.

For a uniform change in absorption coefficient,
the WKB approximation is exact, while for a uni-
form change in scattering coefficient (D0→D),
WKB is exact to a factor of D/D0 .
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To reconstruct an image to form a contour map of
objects, the reconstruction region is first partitioned
into a lattice, with each cell representing a pixel
(voxel). Thus, Eqs. (7) and (8) are discretized on a
lattice:

(
j

Dl ijdk j5S ln
f0

f D
i

[pi , (12)

where dk j represents dkr or dk i to be solved for the
j’th pixel, Dl ij corresponds to that portion of the i’th
straight line ab which falls into the j’th pixel, and pi
represents the natural logarithm of the ratio
(without/with) of the i’th pair signal of source and
detector. The linear equations resulting from Eq.
(12) can be solved in several ways. We employed
the standard simultaneous algebraic reconstruction
technique (SART),16 i.e.,

dk j
~k !5dk j

~k21 !1
( i@ l ij@pi2( jl ijdk j

~k21 !#/( jl ij#

( il ij
,

(13)

where i is the i’th pair of source and detector, j is
the j’th pixel, and k is the k’th iteration.

3 TESTING THE WKB IMAGE
RECONSTRUCTION ALGORITHM

In this section we present image reconstruction us-
ing WKB imaging algorithms with both simulated
and experimental data.

3.1 IMAGE RECONSTRUCTION IN AN
INFINITE MEDIUM USING SIMULATED
DATA

In order to simulate a tumor in the human brain or
breast in an infinite medium, a model system (see
Figure 1) was used that consisted of a spherical ob-
ject with a diameter of 10 mm, off center at (90 mm,

Fig. 1 Schematic of fan beam geometry for simulated data in an
infinite medium.
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Fig. 2 Relationship of ratio (lnuf/f0u) of the amplitudes and the
phase shift difference (with object−without one) for various modu-
lation frequencies where the source is at the angle 0 deg, and the
64 detectors are uniformly distributed on the half circle between
@p/2, 3p/2#. Solid, dashed, and dotted lines correspond to re-
sults for modulation frequencies (f ) of 0, 200, and 1000 MHz,
respectively.
75 mm, 0) and hidden inside the reconstruction re-
gion of a cylinder with a diameter of 150 mm, cen-
tered at (75 mm, 75 mm, 0) in an infinite medium.

The optical parameters for the background me-
dium were chosen to correspond realistically to
those of white matter in the human brain17–20: la0
5333 mm (ma050.003 mm−1), and l t050.67 mm
(ms08 51.6 mm−1). The absorbing spherical object
was assumed to have optical parameters corre-
sponding to those of a realistic hematoma, with a
higher absorption l̃ a1533 mm (m̃a150.03 mm−1),
and the same transport length as the background
l̃ t150.67 mm (m̃s18 51.6 mm−1). The mock data
‘‘measured’’ at different modulation frequencies
were computed at the various detection positions
on z50 plane by using an analytic solution by O’
Leary et al.4 For a source position, the photon flu-
ence rates were computed at 64 equally spaced de-
tector positions on the half circle opposite the
source. For example, if the source was at u50 deg
(i.e., coordinates at 150 mm, 75 mm, 0), then detec-
tors were placed on the half circle uniformly within
the angular range @p/2,3p/2# . The source and de-
tector pairs were rotated around the circle in 128
steps, providing data for 128 viewing angles. The
total number of data points input for inverse recon-
struction was 12836458192.

Figure 2 shows the relationship of the ratio (with
object/without one) of the amplitudes and the
phase-shift difference (with object−without one)
for different modulation frequencies, where the
source was at the angle 0 deg. Figures 2(a) and 2(b)
display the ratio of amplitude modulation versus
positions of detectors and the phase-shift difference
versus the positions of detectors, respectively.
Changes in amplitude and phase are small because
the object is very small (the ratio of the cross section
of the sampling area and the object is 1/225'0.5%).

The AC amplitude in most detectors decreases as
the absorbing object is inserted into the medium.
The maximum reduction occurs when the detector
is placed in the line of sight with the source and the
JOUR
object. The decrease in amplitude indicates that the
object has a higher scattering or absorption coeffi-
cient, or a higher k value.

The change in phase is interesting. The phase
shift shows a decrease in phase for off-line-of-sight
detectors but an increase in the line-of-sight detec-
tors. This is an indication that the object might be
an absorber. For off-line detectors, photons travel-
ing through longer paths (off a straight source–
detector line) and absorbed by the object result in a
decrease in phase shift, while for on-line detectors,
earlier arriving photons traveling through the ob-
ject are absorbed, resulting in an increase in phase
shift.

Figure 3 shows a test image reconstructed from
simulated data for various modulation frequencies
by using amplitudes of signals and Eq. (7). Figures
3(a), 3(b), and 3(c) are gray-scale representations of
the reconstructed images of the real part of a wave
vector dkr(x,f ) for modulation frequencies of 0,
200, and 1000 MHz, respectively. Figure 3(d) plots
dkr(x,f ) against spatial coordinates x at y
575 mm, i.e., the maximum slice plane of
dkr(x,f ). The central position and the shape of the
reconstructed object are correct for all three modu-
lation frequencies of 0, 200, and 1000 MHz. The
maximum values for dkrumax and full-width-of-half
maximum (FWHM) of the reconstructed object for
modulation frequencies f50, 200, and 1000 MHz
are given in Table 1. These values show that the
reconstruction is larger than the real object (10
mm). The size of the reconstructed object becomes
smaller when the modulation frequency is in-
creased.

Figure 4 shows a test image reconstructed from
simulated data for modulation frequencies at 200
and 1000 MHz by using imaginary parts of the sig-
nals @ imag@ ln(f/f0)# and Eq. (8)]. Figures 4(a) and
4(c) are gray-scale representations of the recon-

Fig. 3 2-D test of dk r(x) image reconstruction of 1283128 pix-
els. Solid, dashed, and dotted lines in (d) correspond to the modu-
lation frequencies of 0, 200, and 1000 MHz.
429NAL OF BIOMEDICAL OPTICS d OCTOBER 1997 d VOL. 2 NO. 4
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Table 1 Effect of modulation frequency in infinite media.

f (MHz) dk rumax (mm−1) dk iumax (mm−1) HWr (mm) HWi (mm) Object size (mm)

0 0.00154 N/Aa 42 N/A 10

200 0.00184 0.00062 40 24 10

1000 0.00277 0.00134 32 14 10

a N/A:not applicable.
structed images dk i(x,f ) and correspond to f5200
and 1000 MHz, respectively. Figures 4(b) and 4(d)
show a plot of dk i(x,f ) against spatial coordinates
x at y575 mm, i.e., the maximum slice plane of
dk i , corresponding to f5200 and 1000 MHz, re-
spectively. These results are interesting. The central
position of the reconstructed object is correct. The
FWHM of the reconstructed object using the imagi-
nary part is smaller than the results obtained from
the real part of the data. The maximum values and
FWHM are given in Table 1.

These values show that when f51000 MHz, the
size of the image is almost the same as that of the
real object (10 mm). Using imaginary reconstruction
at the higher modulation frequency, the central po-
sition of the object and the approximation of its size
can be obtained.

This is physically associated with the fact that as
v increases, the effective absorption length La
[1/k8 decreases

S k85real~k!5
1

A2D0
@Ama

21~v/c !21ma#
1/2D ,

leading to a shrinkage in the width of the ‘‘banana’’
region connecting the source and detector in which
photon diffusion paths are concentrated. This
F BIOMEDICAL OPTICS d OCTOBER 1997 d VOL. 2 NO. 4
shrinkage effect implies that the MPDP carries
more and more weight in determining f(b,a;v) and
f0(b,a;v) at the detector position at higher and
higher modulation frequencies, and hence the WKB
approximation becomes better and better as v in-
creases.

From Figures 3 and 4, the central position of the
image object is nearly the same for different modu-
lation frequencies. The reconstructed objects are
larger than the actual objects. The figures also show
that higher modulation frequencies give better im-
ages. Image reconstruction from phase information
(the imaginary part) also gives a better resolution
than reconstruction from amplitude data.

3.2 IMAGE RECONSTRUCTION OF
SIMULATED DATA FOR A FINITE MEDIUM

In order to simulate the breast more closely, a me-
dium in the shape of a square (2D) 60360 mm2

(see Figure 5) was simulated. The optical param-
eters for the background medium were chosen to
correspond realistically to those of tissue matter in
the breast21–23: la05125 mm (ma050.008 mm−1),
and l t051.0 mm (ms08 51.0 mm−1). A cylindrical
shape-absorbing object 5 mm in diameter was
placed slightly off the center of the square (35 mm,

Fig. 5 A schematic of square geometry for simulated data for an
absorbing boundary in a finite medium.
Fig. 4 2-D test of dk i(x) image reconstruction of 1283128 pix-
els.
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Fig. 6 Relationship of (a) the ratio (with object/without one) of the
amplitudes and (b) the phase-shift difference (with
object−without one) for various modulation frequencies. Solid,
dashed, and dotted lines correspond to results for modulation fre-
quencies of 0, 200, and 1000 MHz, respectively.
35 mm). The optical parameters of the hidden ob-
ject were similar to those of a realistic tumor, with
l̃ a1545 mm (m̃a150.024 mm−1), and l̃ t151.0 mm
(m̃s18 51.0 mm−1). The ‘‘measured’’ mock data were
the photon fluxes, J52D¹fus , computed at the
various detection positions by using numerical so-
lutions of the diffusion equation. The solutions
were computed with the absorbing boundary.6 The
detectors and sources were arranged on opposite
sides of the square and could be moved along op-
posite sides. The scan step size was 1 mm, and the
source-detector pairs were rotated 90 deg once, so
the total number of data points was 2359359
(56962).

Figure 6 shows the relationship of the ratio (with
object/without one) of the amplitudes and the
phase-shift difference (with object−without one)
for different modulation frequencies. The source
was at the coordinate (30 mm, 0 mm) and the 59
detectors were uniformly placed at the coordinates
of y560 mm, and x51 mm, 2 mm,..., and 59 mm.
The changes in amplitude ratio and phase shift are
similar to those discussed in Sec. 3.1.

Figure 7 shows images reconstructed from simu-
lated data for various modulation frequencies by
using the amplitude of the signals. Figures 7(a),
7(b), and 7(c) are gray-scale representations of the
reconstructed images dkr(x,f ) and correspond to
f50, 200, and 1000 MHz, respectively. Figure 7(d)
plots dkr(x,f ) against spatial coordinates x at y
535 mm, i.e., the maximum slice plane of
dkr(x,f ). The central position of the reconstructed
object is correct for all three modulation frequencies
of 0, 200, and 1000 MHz. The maximum values of
dkr and half-widths of maximum of dkr for differ-
ent modulation frequencies are listed in Table 2.

These values show that the the reconstructed ob-
ject is larger than the real one (5 mm); however, the
size of the reconstruction becomes smaller when
the modulation frequency is increased. The image
quality (size and shape) is not as good as the recon-
structed images for an infinite medium (see Figures
3 and 4). The dependence on modulation frequency
is not as strong as in infinite media, but a higher
frequency yields slightly better resolution. The rea-
JOUR
son may be because a finite boundary and a limited
number of projection directions are used (only two
directions, so the shape of the image object is not a
cylinder).

We have attempted to reconstruct images from
phase information (imaginary parts of signals). Un-
fortunately, the image quality is not as good as im-
ages reconstructed from real amplitude due to the
presence of the boundary.

3.3 IMAGE RECONSTRUCTION FROM
EXPERIMENTAL DATA

Experiments were performed on an infinite In-
tralipid phantom medium at the zero modulation
frequency. The medium was 40340330 cm3. Fig-
ure 8 shows a schematic of the experimental ar-
rangement. Two laser diodes at wavelengths of l
5780 nm and 830 nm were used as sources. A me-
chanical chopper modulated the intensity of the la-
ser beams at 350 Hz. The laser beams were coupled
into an optical fiber with diameter of 0.4 mm to
deliver the light to the sample. The average power
incident to the sample was about 2 mW for each
wavelength. An optical fiber bundle with diameter
of 5 mm was used to collect the scattered light. The
output was split equally and coupled through two
narrow band filters (780 and 830 nm) to two photo-

Fig. 7 2-D test of dk r(x) image reconstruction of 60360 pixels. In
(d), the solid, dashed, and dotted lines correspond to modulation
frequencies of 0, 200, and 1000 MHz, respectively.

Table 2 Effect of modulation frequency in finite media.

f (MHz) dk rumax (mm−1) HWr (mm) Object size (mm)

0 0.0034 32 5

200 0.0035 30 5

1000 0.0035 22 5
431NAL OF BIOMEDICAL OPTICS d OCTOBER 1997 d VOL. 2 NO. 4
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Fig. 8 A schematic diagram of experimental apparatus.
multipliers (PMT). Two PC board lock-in amplifiers
(Ithaca 3981) detected and digitized the signal from
the PMTs on a PC computer.

Figures 9(a) and 9(b) show the measured configu-
ration of two phantom samples that were similar to
the simulated example in Sec. 3.2. The optical pa-
rameters of the background media were about la0
5200 mm (ma050.005/ mm, water) and l t08 55 mm
(ms08 50.2/mm). In order to test our algorithm, we
assumed that the optical parameters of the back-
ground medium and object are unknown; therefore
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Eqs. (7) and (8) must be employed again. The im-
aged area was a 60-mm square in an infinite me-
dium. The objects were cylinders with diameters of
7 mm.

Similar to the measurement configuration in Sec.
3.2, the source and the detector were attached to
two opposite sides of the square sample region and
moved along the two opposite sides. The source
was moved in steps of 2 mm, while the detector
was moved in steps of 1 mm. Therefore, 31359
51829 data points (dc intensity, v50) were ob-
tained for each projection direction. The source–
detector pairs were rotated 90 deg once. The total
data points were 233135953658.

Two experiments were performed to demonstrate
the potential of the algorithm. The first experimen-
tal square sample [see Figure 9(a)] has only one cy-
lindrical object filled with a stronger scattering and
absorbing medium. The object’s medium was In-
tralipid solution with a small amount of naphthol
green B dye. The optical parameters were about la
54.5 mm (ma50.23/mm) at 780 nm and la
56.7 mm (ma50.15/mm) at 830 nm. l t851 mm
(ms851/mm) for 780 and 830 nm. The coordinate of
the center of the object was at (40 mm, 20 mm).

Figure 10 shows the reconstructed image of the
object in Figure 9(a) in gray scale. Figures 10(a) and
10(b) correspond to a source wavelength l
5780 nm, and Figures 10(c) and 10(d) correspond
to a source wavelength l5830 nm. The shapes and
sizes of the reconstructed images were about the
same for the two source wavelengths. The value of
dkr at 780 nm was larger than the value at 830 nm.
This result is consistent with the fact that dkr(780)
.dkr(830) for the object tested. The image shows
that central position of the object is correct, but the
shape of the image is not cylindrical and the size is
much larger than the actual object.

Fig. 10 2-D test of an image of 60360 pixels reconstructed from
the experimental data of an object [see Figure 9(a) and text].
Fig. 9 A schematic of two phantom samples. (a) One cylindrical
object filled with a stronger scattering and absorbing medium. (b)
Two cylindrical objects with the same absorbing properties as their
background.
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Fig. 11 2-D test of an image of 60360 pixels reconstructed from
the experimental data of two objects [see Figure 9(b) and text].
The second test sample is shown in Figure 9(b),
where two cylindrical objects had the same absorb-
ing properties as the background. One of the ob-
jects, centered at (20 mm, 40 mm), was nonscatter-
ing (water) and another object, centered at (40 mm,
20 mm), was a higher scattering object, l t851 mm
(ms851/mm).

Figure 11 shows the reconstructed result of two
objects in Figure 9(b) in gray scale. Figure 11(a) cor-
responds to a source wavelength l5780 nm; Fig-
ure 11(b) corresponds to a source wavelength
l5830 nm. A comparison of Figures 11(a) and
11(b) shows that a source wavelength l5780 nm is
better than a source wave length l5830 nm for this
sample. In Figure 11(a), one can resolve the two
objects. The sizes of the images are different. This
result is reasonable, because the two objects have
the same absorbing properties as the background.
The size of the nonscattering object is smaller and
closer to the real size. The effect of diffusion blur-
ring of the nonscattering object is much smaller
than for the higher scattering object. It is also inter-
esting to note that the value of dk for the nonscat-
tering object is negative while it is positive for the
strongly scattering object. This correctly indicates
which object has a weaker attenuation factor. Fig-
ure 11(b) shows that at the l5830 nm the stronger
scattering object was not clearly resolved, while the
weaker object was better identified. The reason
could be that at l5830 nm the scattering difference
between object and background is smaller than that
at l5780 nm for the strongly scattering object.

4 DISCUSSION

The results of image reconstruction using both
simulated and experimental data with the WKB ap-
proximation algorithm show the following:

1. Figures 3, 4, 6, 7, 10, and 11 show that the cen-
tral position(s) of hidden object(s) can be found. It
is also possible to determine whether an object has
a higher or lower photo density wave attenuation
factor k. However, the images are larger than the
actual sizes of the objects in an infinite medium; the
reconstructions using real parts are about 4.2, 4,
and 3.2 times the size of the object for f50, 200, and
1000 MHz, respectively. The reconstructions using
imaginary parts are about 2.4 and 1.4 times the size
JOUR
of the object for f5200 and 1000 MHz, respectively.
For a finite medium, all reconstructions were at
least four times larger than the actual objects.

These results show that the image was blurred by
the diffusive nature of photons. Although the total
amount of input data was about the same, the
shapes of the reconstructed objects shown in Fig-
ures 3 and 4 are much closer to the real shape of a
cylinder than the results shown in Figures 7, 10,
and 11. The data used to reconstruct images in Fig-
ures 3 and 4 are full view angle data, while the data
used for Figures 7, 10, and 11 are data with limited
view angles. This result indicates that the experi-
mental arrangement of geometry is important to
this algorithm.

2. Tables 1 and 2 show that increasing the modu-
lation frequency can improve image quality. How-
ever, the results show that for the modulation fre-
quency (200 MHz) commonly used, the
improvement in the spatial resolution is limited.
The spatial resolution can be significantly improved
by using a much higher modulation frequency
(1000 MHz). This verifies that increasing modula-
tion frequency leads to a shrinkage in the width of
the ‘‘banana’’ region connecting the source and de-
tector in which photon diffusion paths are concen-
trated. Too high a modulation frequency leads to a
reduction in scattered light intensity and thus the
signal-to-noise ratio. In the case discussed in Sec.
3.1, the intensity at 1000 MHz is reduced more than
5 orders compared with the intensities at CW and
200 MHz.

3. The advantage of this algorithm is that the op-
tical parameters need not be known. Figures 10 and
11 show that different source wavelengths pro-
duces different image results. Selecting a source
wavelength for the absorption features of hidden
objects should be considered for different samples.

4. The time to reconstruct an image of N3N
51283128 pixels was about 5 min on the SUN-
SPARC 5. The memory needed is also small, pro-
portional to a number of pixels N , while for the
inverse matrix method, the computation time is
about N log27 and the memory size is N2.

In summary, we have tested a novel diffusion to-
mography algorithm for imaging highly scattering
media. Reconstruction results using both simulated
data and experimental data show the capability of
the WKB algorithm.
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5 APPENDIX

This appendix presents the deviation of forward so-
lutions of diffusion equations [Eqs. (1) and (2)] in
the path integration formula. This work was
adopted from the work by S. C. Feng, F. Zeng, and
H. L. Zhao at the University of California at Los
Angeles.13,14

The diffusion equation (1) can be described by
path integration, following the original work of
Feynman,15 i.e., if a photon has a mass 1/(2D) and
moves in potential 2ma(x), then we can use classi-
cal mechanics to describe the photon diffusion
problem. In classical mechanics, the Lagrangian
L(x, ẋ) of the diffusion equation (1) and classical ac-
tion S$x% are, respectively

L[L~x, ẋ!5
1

4Dc
ẋ21ma~x!c , (14)

and

S@x~t !#5E
0

t
Ldt5E

0

tF 1
4Dc

ẋ21ma~x!cGdt . (15)

The solution to Eq. (1) can be written as a path
integration in a time domain as follows:

f~b,t ;a,0!5E
a

b
dx~t!exp$2S@x~t!#%, (16)

which describes diffusive photon propagation from
source point a at time 0 to detector point b at time
t . The integration dx(t) in Eq. (16) denotes a path
integration over all the possible diffusion paths de-
scribed by the trajectory x(t), with 0<t<t being a
running time variable.

Using the well-known stationary phase approxi-
mation, the lowest-order Green’s function
f(b,t ;a,0) is determined by minimizing the classi-
cal action S@x(t)# , which determines the path x(t);
this is a most probable diffusing path of the diffu-
sion photon, with the starting point (x5a, at t50)
and ending point (x5b, at t5t).

The extremum property of S@x(t)# is expressed
by dS@x(t)#50, which leads to the Euler–Lagrange
equations for x(t):

d
dt S ]L

] ẋ D2
]L
]x

50. (17)

Substituting Eq. (14) in Eq. (17), we can see that
x(t) must satisfy:

1
2Dc

ẍ2¹ma~x!c50. (18)

An obvious necessary condition for x(t) to be a
minimum of S is that the quadratic form d2S be
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nonnegative. This requirement is valid for
Lagrangians of Eq. (14). Expanding action S@x(t)#
around x̄(t), we have

S@x~t!#5S@ x̄~t!#1«dS1
«2

2!
d2S1 . . . . (19)

Substituting Eq. (19) in Eq. (16), performing the in-
tegration up to the d2S (note: dS50), after the te-
dious job of evaluating, one finds that the semiclas-
sical WKB approximation for the diffusive Green’s
function15 is as follows:

f~b,t ;a,0!5H FUdetS 1
2p

]2S̄
]b]aD UG

1/2

exp~2S̄ ! t.0,

0 t,0,
(20)

where S̄[S$x̄(t)%. The det is an n-dimensional de-
terminant.

As a check for WKB approximation, solution of
Eq. (18) for a homogeneous medium (note: ¹ma(x)
50) gives

x̄~t!5a1
t

t
~b2a!, (21)

which indicates that the MPDP is a straight line for
a homogeneous medium in a time domain.

After computing a classical action using Eq. (15),
the time domain diffusion propagator of the homo-
geneous medium can be obtained from Eq. (20):

f0~b,t ;a,0!5S 1
4pD0ct D

3/2

expS 2
~b2a!2

4D0ct
2ma0ct D ,

(22)

which is exactly the solution of the diffusion equa-
tion (1) for a homogeneous medium.

One can also formulate this WKB approximation
in frequency domain. The photon fluence function
f(b,a,v) is obtained through Fourier transform as
follows:

f~b,a;v!5E
2`

1`

dtf~b,t ;a,0!exp~ ivt !

5E
2`

1`

dtFUdetS 1
2p

]2S̄
]a]bD UG 1/2

3exp@2 s̄~b,a,t !1ivt# . (23)

Applying the stationary phase approximation from
statistical mechanics, a special time scale t0 can be
identified to minimize @ S̄(b,a,t ,2ivt)# through:
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]S̄~b,a,t !

]t U
t0

5iv . (24)

For each special time scale t0 , a Gaussian approxi-
mation to the exponent of Eq. (23) at t5t0 gives the
leading term in d space dimension:

f~b,a;v!5S 1
2p D d/2

@ udet ]2S̄~b,a;t0!/]b]au#1/2

3exp@2S̄1ivt0#E
2`

`

dt

3exp$2@]2S̄~b,a;t0!/]t2#~t2t0!2/2%.

(25)

In Eq. (25), part of the integral is:

E
2`

`

dt exp$2@]2S̄~b,a;t0!/]t2#~t2t0!2/2%

5F 2p

]2S̄~b,a;t0!/]t0
2G 1/2

. (26)

Using the standard Legendre transformation:

W~b,a;v!5S̄~b,a;t0!2ivt0 , (27)

Eq. (25) can be rewritten as:

f~b,a;v!5S 1
2p D d21/2

AD̃ exp@2W~b,a;v!# ,

(28)

where D̃ is

D̃5detS ]2S̄~b,a;t0!

]b]a D Y ]2S̄~b,a;t0!

]t0
2

5detF ]2W
]b]a

i
]2W
]b]v

i
]2W
]a]v

2
]2W
]v2

G . (29)

From the Hamilton–Jacobi equation for action S ,
we have

DS ]W
] x̄ D 2

2ma~ x̄!52iv . (30)

Thus, W(b,a;v) corresponds to the path integra-
tion as follows:

W~b,a;v!5E
a

b
k~x,v!dl, (31)

where

k~x,v!5@ma /D2iv/Dc#1/2
JOUR
5
1

A2D
$@Ama

21~v/c !21ma#
1/2

2i@Ama
21~v/c !22ma#

1/2%. (32)

For homogeneous media, from Eq. (31),
W(b,a;v)5k0ub2au, and from Eq. (29), D̃
5@1/(2D0ub2au)2# ; thus, for a three-space dimen-
sion d53, Eq. (28) becomes

f0~b,a,v!5
1

4pD0cr
exp~2k0r !, (33)

where r5ub2au. Equation (33) is the solution of the
diffusion equation (1) for homogeneous media in a
frequency domain.

For inhomogeneous media, the MPDP in the fre-
quency domain can be obtained using the varia-
tional principle24

dW~b,a,v!5dE
a

b
k~x,v!dl50. (34)

Since k(x,v) is a complex, this equation is true for
both the real and imaginary parts of k(x,v). Explicit
expression of the MPDP can be obtained using dif-
ferential geometry.24 If we denote t, n as the unit
tangential and principal normal vectors of the
MPDP, and let R be the local radius of curvature of
the MPDP, these quantities can be obtained from
the trajectory function of the MPDP x(l) by the re-
lations

t5
dx
dl

,
n
R

5
d2x
dl2 . (35)

The MPDP is then determined from

¹ma2~t•¹ma!t5~¹ma!nn

52F ~ma /D !21~v/Dc !2
n
R G1/2

.

(36)
An interesting quantitative feature of Eq. (36) is that
for a given spatial distribution of ma(x), when
modulation frequencies are increased, the radius of
curvature R is also increased [note: the spatial dis-
tribution of ma(x) is given]. This is why the MPDP
becomes straighter when the modulation frequen-
cies are increased. This point can be seen in Sec. 3.
Analytic solutions of Eq. (36) for an arbitrary poten-
tial ma(x) are in general difficult. However, it is pos-
sible to numerically ‘‘trace out’’ an MPDP in the
frequency domain through Eq. (36). Once the
MPDP path is obtained, one can numerically inte-
grate k(x,v) along the path, and obtain the photon
fluence rate in the WKB approximation at the end-
point x5b through Eq. (2). Obviously, if ¹ma→0,
then R→` ; this indicates that for homogeneous
media, MPDP is a straight line for any modulation
frequency.
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