The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9781628413069

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2014, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/14/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:
- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID Number.
Contents

vii Authors
ix Conference Committee
xi Remote sensing at the NASA Kennedy Space Center and the Eastern Range: a perspective from the ground up (Plenary Paper) [9241-100]

SAR PROCESSING

9243 02	Suitability of COSMO-SkyMed constellation for radargrammetric DEM generation [9243-1]
9243 03	Advanced SAR simulator with multi-beam interferometric capabilities [9243-2]
9243 04	Modeling atmospheric precipitation impact on synthetic aperture radar imagery at X and Ka bands [9243-3]
9243 05	Intermittent Small Baseline Subset (ISBAS) monitoring of land covers unfavourable for conventional C-band InSAR: proof-of-concept for peatland environments in North Wales, UK [9243-4]

SAR APPLICATION I

9243 06	Preparing a new data set for earthquake damage detection in SAR imagery: the Christchurch example II [9243-5]
9243 07	Detecting sparse earthquake damages in high density urban settlements by VHR SAR data [9243-6]
9243 08	Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering [9243-7]

SAR DATA ANALYSIS I: JOINT SESSION

| 9243 0A | Target modelling for SAR image simulation [9243-10] |
| 9243 0B | Non-destructive wavelet-based despeckling in SAR images [9243-11] |

SAR DATA ANALYSIS II: JOINT SESSION

| 9243 0C | Exploitation of a large COSMO-SkyMed interferometric dataset [9243-12] |
SAR APPLICATION IN HYDROLOGY

- **9243 0D** Benefits of blind speckle decorrelation for InSAR processing (Best Student Paper Award) [9243-13]

INTERFEROMETRY AND SAR PROCESSING

- **9243 0I** Corner reflectors and multi-temporal SAR interferometry for landslide monitoring [9243-18]
- **9243 0J** Utilisation of the COSMO-SkyMed Constellation for coherent and incoherent monitoring [9243-19]
- **9243 0K** The PSIG chain: an approach to Persistent Scatterer Interferometry [9243-36]
- **9243 0L** Impact of focusing of Ground Based SAR data on the quality of interferometric SAR applications [9243-21]
- **9243 0M** An assessment of TanDEM-X GlobalDEM over rural and urban areas [9243-22]

SAR APPLICATION FOR VEGETATION MONITORING

- **9243 0N** Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats [9243-23]
- **9243 0P** COSMO-SkyMed potentiality to identify crop-specific behavior and monitor phenological parameters [9243-26]

SAR APPLICATION II

- **9243 0R** Soil moisture estimation using synergy of optical, SAR and topographic data with Gaussian Process Regression [9243-28]
- **9243 0S** Oil spill analysis by means of full polarimetric UAVSAR (L-band) and Radarsat-2 (C-band) products acquired during Deepwater Horizon Disaster [9243-29]
- **9243 0T** Wake-based ship route estimation in high-resolution SAR images [9243-30]
- **9243 0U** A comparative study of RADAR Ka-band backscatter [9243-31]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9243 0W</td>
<td>Repeat-pass interferometric performance analysis for geosynchronous circular SAR</td>
<td>[9243-32]</td>
</tr>
<tr>
<td>9243 0X</td>
<td>Preparing a new data set for earthquake damage detection in SAR imagery: the Christchurch example I</td>
<td>[9243-33]</td>
</tr>
<tr>
<td>9243 0Y</td>
<td>Polarimetric SAR tomography in the X-band by continuous wave multi-baseline SAR tracks in a convex optimization approach</td>
<td>[9243-34]</td>
</tr>
<tr>
<td>9243 0Z</td>
<td>Experimental 3-D SAR human target signature analysis</td>
<td>[9243-35]</td>
</tr>
<tr>
<td>9243 10</td>
<td>Feature of the displacement in applying the sub-pixel matching methodology to high-resolution TerraSAR-X images in the Great East Japan Earthquake 2011</td>
<td>[9243-37]</td>
</tr>
<tr>
<td>9243 11</td>
<td>Monitoring of surface deformation in open pit mine using DInSAR time-series: a case study in the NSW iron mine (Carajás, Brazil) using TerraSAR-X data</td>
<td>[9243-38]</td>
</tr>
<tr>
<td>9243 12</td>
<td>Imaging of downward-looking linear array SAR using three-dimensional spatial smoothing MUSIC algorithm</td>
<td>[9243-39]</td>
</tr>
<tr>
<td>9243 13</td>
<td>Ambiguities analysis in SAR tomography</td>
<td>[9243-40]</td>
</tr>
<tr>
<td>9243 14</td>
<td>Ship surveillance with Radarsat-2 ScanSAR</td>
<td>[9243-41]</td>
</tr>
<tr>
<td>9243 15</td>
<td>Deformation monitoring in the metro Manila using ALOS/PALSAR</td>
<td>[9243-42]</td>
</tr>
<tr>
<td>9243 16</td>
<td>High resolution image formation method based on the realistic spaceborne SAR modeling and simulation</td>
<td>[9243-43]</td>
</tr>
<tr>
<td>9243 17</td>
<td>The COSMO-SkyMed support to earthquake events</td>
<td>[9243-44]</td>
</tr>
<tr>
<td>9243 18</td>
<td>MetaSensing’s FastGBSAR: ground based radar for deformation monitoring</td>
<td>[9243-45]</td>
</tr>
<tr>
<td>9243 19</td>
<td>Prediction of water quality parameters from SAR images by using multivariate and texture analysis models</td>
<td>[9243-46]</td>
</tr>
<tr>
<td>9243 1A</td>
<td>Focusing of bistatic SAR data</td>
<td>[9243-47]</td>
</tr>
<tr>
<td>9243 1B</td>
<td>Intermittent SBAS (ISBAS) InSAR with COSMO-SkyMed X-band high resolution SAR data for landslide inventory mapping in Piana degli Albanesi (Italy)</td>
<td>[9243-48]</td>
</tr>
<tr>
<td>9243 1C</td>
<td>Combined use of COSMO-SkyMed derived products and hydrodynamic models to produce physically-based maps of flood extent</td>
<td>[9243-49]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Albiol, David, 08
Alparone, L., 0D
Annibale, R., 07
Argenti, F., 0D
Barbré, Robert E., Jr., xi
Battaglione, M., L., 17
Bekhtin, Yuri S., 0B
Bertoldi, G., 0G, 0R
Bia, Pietro, 1A
Bignami, C., 07
Biondi, Filippo, 0Y
Boni, G., 1C
Borgeaud, M., 0R
Bovenga, Fabio, 02, 0C, 0I
Bryantsev, Andrey A., 0B
Calcata, Domenico, 1B
Calleja, D., 0U
Camargo, Paulo O., 11
Catalao, Joao, 1A
Cazzarri, Victor, 03
Chan, Brigitte, 02
Chiaradia, Maria Teresa, 02, 0C
Chini, M., 07
Ciappa, Achille, 0J
Cigna, Francesca, 05, 1B
Coletta, A., 17
Comber, Alexis, 0N
Conte, Domenico, 02
Crippa, Bruno, 0K
Crossato, Michele, 0K
Cuevas-González, María, 0K
Cuozzo, G., 0G, 0R
D’Addario, Lary, xi
Daraio, M., G., 17
Decker, Ryan K., xi
Deguchi, Tomomori, 15
Del Frate, Fabio, 0S
Dell’Omodarme, Kevin, 0Y
Della Chiesa, S., 0G, 0R
D’Errico, Marco, 0T
Devanthery, Núria, OK
Di Pasquale, Andrea, 0L
DiFilippo, David D., J., 0Z
Din, Luigi, 0P
Duro, Javier, 0B, 0M
Eddy, Andrew, 0M
Fascetti, Fabio, 0E
Ferraris, L., 1C
Ferrazzoli, P., 0U
Fiori, Luca, 0Y
Fiorni, M., 1C
Fornaro, G., 0D
Gaio, Maurizia, 11
Gama, Fabio F., 11
Geldzhikov, Barry, xi
Giudici, D., 0U
Graziano, M., Daniela, 0T
Greifeneder, F., 0G, 0R
Guarini, Rocchina, 0P
Guccione, Pietro, 0L
Guerriero, L., 0U
Hammer, H., 06, 0X
Hiramatsu, T., 10
Huber, Martin, 0M
Huddleston, Lisa L., xi
Iglesias, Rubén, 0B
Jones, Cathleen E., 0S
Jordan, Colm J., 05, 1B
Khenchaf, Ali, 19
Kim, SeYoung, 16
Kou, Leilei, 0W
Koudogbo, Fafamé N., 0M
Kuang, Gangyao, 12
Kuny, S., 06, 0X
Lamb, Alistair, 0N
Lapini, A., 0D
Lati, Karie, 0S
Lucas, Richard M., 0M
Lupachev, Alexey A., 0B
Malebo, Damião P., 0B
Mapelli, D., 0U
Márquez, José, 03
Marzano, Frank S., 04
Mascolo, Luigi, 0L
Mastronardi, Giovanni, 0P
Meta, Adriano, 18
Miller, Michael J., xi
Monserrat, Oriol, 0K
Monti Guarnieri, A., 0U
Montopoli, Mario, 04
Morabito, David D., xi
Morgan, Jennifer G., xi
Mori, Saverio, 04
Mura, José C., 11
Nico, Giovanni, 0L, 1A
Niedrist, G., 0G, 0R
Nitti, Davide O., 02, 0C, 0I
Nonaka, T., 10
Conference Committee

Symposium Chairs
Charles R. Bostater, Florida Institute of Technology (United States)

Symposium Co-chairs
Ulrich Michel, University of Education Heidelberg (Germany)
Bart Snijders, TNO (Netherlands)

Conference Chairs
Claudia Notarnicola, EURAC Research (Italy)
Simonetta Paloscia, Istituto di Fisica Applicata Nello Carrara (Italy)
Nazzareno Pierdicca, Università degli Studi di Roma La Sapienza (Italy)

Conference Programme Committee
Richard Bamler, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Fabio Bovenga, Consiglio Nazionale delle Ricerche (Italy)
Fabio Covello, Agenzia Spaziale Italiana (Italy)
Mihai P. Datcu, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Fabio Del Frate, Università degli Studi di Roma Tor Vergata (Italy)
Linda Marchese, INO (Canada)
Antonio Moccia, Università degli Studi di Napoli Federico II (Italy)
Francesco Nirchio, Agenzia Spaziale Italiana (Italy)
Luca Pasolli, EURAC Research (Italy)
Luca Pulvirenti, Università degli Studi di Roma La Sapienza (Italy)
Emanuele Santi, Istituto di Fisica Applicata Nello Carrara (Italy)
Stefan Schneiderbauer, EURAC Research (Italy)
David Small, Universität Zürich (Switzerland)

Session Chairs
SAR Processing
Fabio Bovenga, CNR ISSIA (Italy)

SAR Application I
Nazzareno Pierdicca, Università degli Studi di Roma La Sapienza (Italy)
SAR Data Analysis I: Joint Session
Francesca Bovolo, Fondazione Bruno Kessler (Italy)

SAR Data Analysis II: Joint Session
Claudia Notarnicola, EURAC Research (Italy)

SAR Application in Hydrology
Claudia Notarnicola, EURAC Research (Italy)

Interferometry and SAR Processing
Fabio Bovenga, CNR ISSIA (Italy)

SAR Application for Vegetation Monitoring
Emanuele Santi, Istituto di Fisica Applicata Nello Carrara (Italy)

SAR Application II
Simonetta Paloscia, Istituto di Fisica Applicata Nello Carrara (Italy)