Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VI

Alexandre Freundlich
Laurent Lombez
Masakazu Sugiyama
Editors

30 January–1 February 2017
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10099
Contents

<table>
<thead>
<tr>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
</tr>
<tr>
<td>vii</td>
</tr>
</tbody>
</table>

EMERGING AND NON-CONVENTIONAL DEVICES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures</td>
<td>10099-9</td>
</tr>
</tbody>
</table>

ADVANCES IN MATERIALS FOR PV

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device physics of Cu(In,Ga)Se₂ solar cells for long-term operation (Invited Paper)</td>
<td>10099-10</td>
</tr>
<tr>
<td>(110) cubic and (100) rhombohedral Ge crystal formation on glass using Al-induced crystallization</td>
<td>10099-12</td>
</tr>
</tbody>
</table>

INTERMEDIATE BAND SOLAR CELLS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of Si doping on InAs/GaAs quantum dot solar cells with AlAs cap layers</td>
<td>10099-16</td>
</tr>
<tr>
<td>Multiband modification of III-V dilute nitrides for IBSC application</td>
<td>10099-17</td>
</tr>
</tbody>
</table>

HOT CARRIER SOLAR CELLS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot carrier cooling mechanisms in multiple quantum wells</td>
<td>10099-19</td>
</tr>
<tr>
<td>Electrical characteristics and hot carrier effects in quantum well solar cells</td>
<td>10099-20</td>
</tr>
<tr>
<td>Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells</td>
<td>10099-22</td>
</tr>
</tbody>
</table>

LIGHT MANAGEMENT I

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative study of absorption efficiency of inclined and vertical InP nanowires</td>
<td>10099-27</td>
</tr>
<tr>
<td>Plasmonic quantum dot solar concentrator</td>
<td>10099-29</td>
</tr>
</tbody>
</table>
ADVANCES IN MODELING AND CHARACTERIZATION II

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10099 0X</td>
<td>Minibands modeling in strain balanced InGaAs/GaAs/GaAsP cells</td>
<td>[10099-32]</td>
</tr>
<tr>
<td>10099 0Z</td>
<td>Characterisation of multi-junction solar cells by mapping of the carrier transport efficiency using luminescence emission</td>
<td>[10099-34]</td>
</tr>
<tr>
<td>10099 10</td>
<td>Optoelectronic engineering of colloidal quantum-dot solar cells beyond the efficiency black hole: a modeling approach</td>
<td>[10099-35]</td>
</tr>
</tbody>
</table>

LIGHT MANAGEMENT II

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10099 12</td>
<td>Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing</td>
<td>[10099-37]</td>
</tr>
<tr>
<td>10099 15</td>
<td>Effects of intermediate plasmonic structures on the performance of ultra-thin-film tandem solar cells</td>
<td>[10099-40]</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10099 17</td>
<td>Selective optical contacting for solar spectrum management</td>
<td>[10099-42]</td>
</tr>
<tr>
<td>10099 18</td>
<td>Multifunctional TiN nanowires for wide band absorption in organic solar cells</td>
<td>[10099-43]</td>
</tr>
<tr>
<td>10099 1A</td>
<td>Application of concentrating plasmonic luminescent down-shifting layers for photovoltaic devices</td>
<td>[10099-45]</td>
</tr>
<tr>
<td>10099 1C</td>
<td>MIMIM photodetectors using plasmonically enhanced MIM absorbers</td>
<td>[10099-47]</td>
</tr>
<tr>
<td>10099 1D</td>
<td>Optical analysis of Si-tapered nanowires/low band gap polymer hybrid solar cells</td>
<td>[10099-48]</td>
</tr>
<tr>
<td>10099 1F</td>
<td>Temperature dependence of quantum-wire intermediate-band solar cells</td>
<td>[10099-50]</td>
</tr>
<tr>
<td>10099 1G</td>
<td>Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells</td>
<td>[10099-51]</td>
</tr>
<tr>
<td>10099 1H</td>
<td>Temperature effect of natural organic extraction upon light absorbance in dye-sensitized solar cells</td>
<td>[10099-52]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdul Wahid, Mohamad Halim, 1G, 1H
Abedini Dereshgi, S., 1C
Aghaeipour Kolyani, Mahtab, 0S
Ahmad Hambali, Nor Azura Malini, 1G, 1H
Ahmed, H., 0U, 1A
Ahsan, Nazmul, 0I
Bermel, Peter, 0A
Bernard, Cyril, 0N
Bescond, Marc, 0X
Boyer-Richard, Soline, 0L
Bremner, Stephen, 0K
Cavassilas, Nicolas, 0X
Chandra, S., 0U, 1A
Chen, Weijian, 17
Conibeer, Gavin, 0K, 17
Delamarre, Amaury, 0Z
Doran, J., 0U
Dorogan, Vitaliy, 0H
Durand, Olivier, 0L
Freundlich, Alexandre, 0D
Galvani, Benoît, 0X
Gan, Qiaoqiang, 18
Gibelli, François, 0L, 0N
Guillemin, Jean-François, 0L, 0N, 0X, 0Z
Hatch, Sabina, 0H
Huang, Shujuan, 17
Jehl, Zacharie, 0N
Jia, Jieyang, 0Z
Julian, Anatoile, 0N
Kharel, Khim, 0D
Kim, Dongyuong, 0H
Kunets, Vasyl P., 1F
Liu, Huiyun, 0H
Lombez, Laurent, 0L
Magdi, Sara, 12, 18, 1D
Mahpeykar, Seyed Milad, 10
Maidaniuk, Yuri, 0H
Mashooq, Kishwar, 15
Mazur, Yuriy I., 0H, 1F
McCormack, S. J., 0U, 1A
Michelin, Fabienne, 0X
Miyaishi, Naoya, 0I, 0N
Mohamad Shahimin, Mukhzeer, 1G, 1H
Mohamed Siddick, Siti Zubaidah, 1G, 1H
Mortazavi, Mansour, 1F
Nakano, Yoshitaka, 0I
Nguyen, Dac-Trung, 0L
Nishinaga, J., 0B
Okada, Yoshitaka, 0I, 0N
Okyay, A. K., 1C
Paire, Myriam, 0L
Patterson, Robert, 17
Pettersson, Håkan, 0S
Pistol, Mats-Erik, 0S
Raflee, M., 1A
Retnasamy, Vithyacharan, 1G, 1H
Sakr, Enas, 0A
Salamo, Gregory J., 0H, 1F
Sarollahi, Mirsaeid, 1F
Sethi, A., 1A
Shervin, Kaveh, 0D
Shibata, Hajime, 0B
Shrestha, Santosh, 0K, 17
Suchet, Daniel, 0N
Sugiyama, Masakazu, 0X, 0Z
Suhaimi, Surfati, 1G, 1H
Swillam, Mohamed A., 12, 18, 1D
Talukder, Muhammad Anisuzzaman, 15
Tang, Mingchu, 0H
Verdier, Paul, 0Z
Walukiewicz, Wladek, 0I
Wang, Bo, 17
Wang, Xihua, 10
Ware, Morgan, 1F
Watanabe, Kentaroh, 0Z
Wen, Xiaoming, 17
Wu, Jiang, 0H
Yang, Jianfeng, 17
Yu, Kin Man, 0I
Zhang, Yi, 0K
Zhang, Zhilong, 17
Conference Committee

Symposium Chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Centre, University of Southampton (United Kingdom)

Program Track Chair

James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs

Alexandre Freundlich, University of Houston (United States)
Laurent Lombez, Institut de Recherche et Développement sur l'Energie Photovoltaïque (France)
Masakazu Sugiyama, The University of Tokyo (Japan)

Conference Program Committee

Kylie R. Catchpole, The Australian National University (Australia)
Gavin Conibeer, The University of New South Wales (Australia)
Olivier Durand, Institut National des Sciences Appliquées de Rennes (France)
Nicholas J. Ekins-Daukes, Imperial College London (United Kingdom)
Jean-François Guillemoles, Institut de Recherche et Développement sur l'Energie Photovoltaïque (France) and Next PV (Japan)
Karin Hinzer, University of Ottawa (Canada)
Louise C. Hirst, U.S. Naval Research Laboratory (United States)
Seth M. Hubbard, Rochester Institute of Technology (United States)
Marek Osiński, The University of New Mexico (United States)
Robert J. Walters, U.S. Naval Research Laboratory (United States)
David M. Will, Air Force Research Laboratory (United States)
Peichen Yu, National Chiao Tung University (Taiwan)
Session Chairs

1. Advances in High Efficiency Multijunction Devices
 Alexandre Freundlich, University of Houston (United States)
 Jean-François Guillemoles, Institut de Recherche et Développement sur l'Energie Photovoltaïque (France) and Next PV (Japan)

2. Emerging and Non-conventional Devices
 Shuhei Yagi, Saitama University (Japan)
 Steven A. Ringel, The Ohio State University (United States)

3. Advances in Materials for PV
 Marina S. Leite, University of Maryland, College Park (United States)
 Amaury Delamarre, The University of Tokyo (Japan)

4. Intermediate Band Solar Cells
 Gavin Conibeer, The University of New South Wales (Australia)
 Chien-Chung Lin, National Chiao Tung University (Taiwan)

5. Hot Carrier Solar Cells
 Urs Aeberhard, Forschungszentrum Jülich GmbH (Germany)
 Amaury Delamarre, The University of Tokyo (Japan)

6. Advances in Modeling and Characterization I
 Zachary Holman, Arizona State University (United States)
 Nazmul Ahsan, The University of Tokyo (Japan)

7. Light Management I
 Zacharie Jehl, The University of Tokyo (Japan)
 Jean-François Guillemoles, Institut de Recherche et Développement sur l'Energie Photovoltaïque (France)

8. Advances in Modeling and Characterization II
 Jeremy N. Munday, University of Maryland, College Park (United States)
 Jérôme Michallon, L’Institut photovoltaïque Ile-de-France (France)

9. Light Management II
 Ian R. Sellers, The University of Oklahoma (United States)
 Jean-François Guillemoles, Institut de Recherche et Développement sur l'Energie Photovoltaïque (France)