CONTENTS

SESSION (1) PLENARY SESSION

08.45	Opening Address	
09.00	Modelling integrated sensor/actuator functions in realistic environments V V Varadan, Liang-Chi Chin and V K Varadan Pennsylvania State University, USA Invited Speaker	1
09.30	Fiber optic smart structures for aerospace applications E Udd McDonnell Douglas Electronic Systems Company, USA Invited Speaker	7
10.00	A concept of intelligent materials and the current activities of intelligent materials in Japan T Takagi Ion Engineering Research Institute Corporation, Japan Invited Speaker	13
10.30	Smart materials research in the USAF Wright Laboratory T G Gerardi, R Pachter, R L Crane and W W Adams Wright-Patterson AFB, USA	19
10.50	COFFEE	
SESSIC	ON (2) FIBRE OPTIC SENSORS I	
11.10	A multifunction sensor for smart structure applications J R Dunphy United Technologies Research Center, USA Invited Speaker	t
11.40	Monitoring of prestressed concrete structures with optical fiber sensors R Wolff and H-J Miesseler SICOM GmbH, Germany	23
12.00	Sensor system architectures for spatially-resolved dynamic strain measurement using optical fibers V A Handerek and A J Rogers King's College London, UK	31
12.20	Elastic curve recovery by a quasi-distributed polarimetric fiber optic sensor A Barberis, P Escobar Rojo, V Gusmeroli, C Mariottini, and M Martinelli CISE Tecnologie Innovative SpA, Italy	35
12.40	Passive phase interrogation and multiplexing of two-mode fiber strain sensors for smart structures systems T A Berkoff and A D Kersey Naval Research Laboratory, USA	39
13.00	LUNCH Optical-fiber sensor-network for temperature and proximity control A Mencaglia, M Brenci and A G Mignani IROE-CNR, Italy	45
† Paper i	First European Conference on Smart Structures and Materials, edited by Brian Culshaw, not available at time BetgeringGardings, Alaster McDonach, Proc. of SPIE Vol. 1777, 177701 · © (1992) 2017	

time Betgering Gargines, Alaster McDonach, Proc. of SPIE Vol. 1777, 177701 · © (1992) 2017 SPIE · CCC code: 0277-786X/17/\$18 · doi: 10.1117/12.2298024

	Digital systems for automatic control of optical resonators used as gravitational waves interferometric detectors F Barone, E Calloni, R De Rosa, F Fusco, L Milano and G Russo Istituto Nazionale di Fisica Nucleare, Italy and Università di Napoli, Italy L Di Fiore Università di Napoli, Italy	49
	Quasi-distributed fiber-optic sensor for simultaneous absolute measurement of strain and temperature L Wosinski, J P Bétend-Bon, M Breidne, B Sahlgren and R Stubbe Institute of Optical Research, Sweden	53
	A digital technique for passive demodulation in a fiber optic homodyne interferometer W Jin, D Walsh, D Uttamchandani and B Culshaw University of Strathclyde, Glasgow	57
	Spatially-weighted optical fiber sensing methods R O Claus, K A Murphy, B R Fogg and J A Greene Virginia Polytechnic, USA A M Vengsarkar AT & T Bell Laboratories, USA	413
	Fiber-grating based strain sensor with phase sensitive detection A D Kersey Naval Research Laboratory, USA T A Berkoff SFA Inc., USA W W Moray United Technologies Research Center, USA	61
SESSION	N (3) FIBRE OPTIC SENSORS II/COMPOSITES	
14.10	What do embedded optical fibers really measure? J S Sirkis and A Dasgupta University of Maryland, USA	69
14.30	Fiber Bragg grating sensor demonstration in glass-fiber reinforced polyester composite H D Simonsen and R Paetsch Per Udsen Co. Aircraft Industry A/S, Denmark J R Dunphy United Technologies Research Center, USA	73
14.50	Unidirectional glass reinforced plastic composite monitoring with white light quasi distributed polarimetric sensing network P Sansonetti, J J Guerin, D Viton, C Gouffier and D Engrand Bertin & CIE, France	77
15.10	Composite strain sensing with a combined interferometric and polarimetric fiber-optic strain gauge N Fürstenau and W Schmidt D.L.R., Germany H-C Goetting Institute for Structural Mechanics, Germany	81

15.30	Spatial modulation within embedded fiber optic sensors for smart structures characterization M A El-Sherif and F K Ko Drexel University, USA	85
15.50	COFFEE Experimental application of a phase-strain-temperature model for polarimetric optical fiber strain sensors P L Nielson Technical University of Denmark, Denmark J S Sirkis and Yu-Lung Lo University of Maryland, USA	89
	Process-induced birefringence variations in fiber optic embedded in composite materials M Turpin, J Chazelas and H Stoppiglia Thomson-CSF, France	93
SESSION	(4) SMART SENSING APPLICATIONS	
16.10	The evolution of smart structures/materials W B Spillman University of Vermont, USA Invited Speaker	97
16.40	Finite element analysis of composite laminates containing transversely embedded optical fiber sensors R Davidson and S S J Roberts AEA Technology, UK	115
17.00	Smart structural composites with the ability to monitor vibration and damage N Shaikh, S Chen, Y Lu and D Timm University of Nebraska, USA	123
17.20	High temperature strain, temperature and damage sensors for advanced aerospace materials A Wang, K Murphy, R May, G Wang, S Gollapudi and R Claus Virgina Polytechnic, USA	127
17.40	Conformal acoustic waveguide technology for smart aerospace structures J N Schoess and C T Sullivan Honeywell Systems & Research Centre, USA	131
18.00	Fiber optic strain sensing for smart adaptive structures B Mason, D Hogg and R M Measures University of Toronto, Canada	135
	Vehicle weighing in motion with fiber optic sensors S Teral Alcatel Cable Contracting, France	139
	Fluorescent plastic fiber sensors for detection of humidity, breathing condition and temperature S Muto and H Ito Yamanashi University, Japan	143

An optical-fiber fatigue crack detection and monitoring system K F Hale Brunel University, UK	147
Fiber optic distributed temperature sensing P R Orrell and A P Leach York Sensors Ltd, UK	151
Preliminary evaluation for developing smart ropes using embedded sensors R G May, R O Claus and K A Murphy Virginia Polytechnic, USA	155
Thermo-elastic auto-measurement of the Grüneisen parameter by a polarimetric fiber-optic sensor P Escobar Rojo and M Martinelli CISE Tecnologie Innovative SpA, Italy M G Beghi and G Caglioti Politecnico di Milano. Italy	159

SESSION (5) ACTUATOR APPLICATIONS

Х

08.30	Mechanics issues of induced strain actuation C A Rogers Virginia Polytechnic, USA Invited Speaker	163
09.00	Piezoelectric ceramics in smart actuators and systems K Uchino The Pennsylvania State University, USA	177
09.20	The stability of strain in shape-memory actuators C M Friend Cranfield Institute of Technology, UK	181
09.40	Active vibration control of flexible linkage mechanisms using shape memory alloy fiber-reinforced composites A Venkatesh, J Hilborn, J-E Bidaux and R Gotthardt Swiss Federal Institute of Technology, Switzerland	185
10.00	Shape memory alloy adjustable camber (SMAAC) control surfaces C H Beauchamp, R H Nadolink, S C Dickinson and L M Dean Naval Undersea Warfare Center, USA	189
10.20	COFFEE	
	Measurement of impulsive pressure applied on a thin plate by piezoelectric transducers T Adachi, S Ujihashi and H Matsumoto Tokyo Institute of Engineering, Japan	193
	Thermal cycling of shape memory alloy wires using semiconductor heat pump modules M A Thrasher, A R Shahin, P H Meckl and J D James Purdue University, USA	197

.

SESSIO	N (6) SMART CONCEPTS FOR CIVIL ENGINEERING I	
10.50	Recent developments in active structural control research in the USA G W Housner California Institute of Technology, USA S F Masri University of Southern California, USA Invited Speaker T T Soong State University of New York, USA	201
11.20	Bearings of a bridge fitted with load measuring devices based on an optical fiber technology J M Caussignac, A Chabert, G Morel LCPC, France P Rogez and J Seantier Societe Freyssinet-Industries, France	207
11.40	Possibilities for the use of strain gauged reinforcement in smart structures R H Scott and P A T Gill University of Durham, UK	211
12.00	Fiber-optic interferometric sensors for concrete structures P Escobar, V Gusmeroli and M Martinelli CISE Tecnologie Innovative SpA, Italy I Lanciani and P Morabito ENEL-CRIS, Italy	215
12.20	Monitoring the performance of real building structures H D Wright and R M Lloyd University of Strathclyde, UK	219
12.40	LUNCH Fiber-optic intensity-modulated sensors for continuous observation of concrete and rock-fill dams A Holst Wolfgang Habel Institute of Structural Engineering, Germany R Lessing SICOM GmbH, Germany	223
SESSIO	N (7) SMART CONCEPTS FOR CIVIL ENGINEERING II	
13.50	Structural control research at the National Science Foundation J Eleonora Sabadell National Science Foundation, USA Invited Speaker	227
14.20	Proposal of a hybrid active dynamic vibration absorber for high-rise buildings under earthquake excitation K Yoshida and T Watanabe Keio University, Japan	233
14.40	An advance notification system for smart structures in seismic zones	237

X1

15.00	Optical fiber sensors for the quantitative measurement of strain in concrete structures B Kruschwitz, R O Claus, K A Murphy, R G May and M F Gunther Virginia Polytechnic, USA	241
15.20	Predictive control of seismic response of structure taking into account the soil-structure interaction T Sato and K Toki Kyoto University, Japan	245
15.40	Installation and preliminary results from fiber optic sensors embedded in a concrete building D R Huston, P L Fuhr, P J Kajenski, T P Ambrose and W B Spillman University of Vermont, USA	409
16.00	COFFEE Towards a methodology for designing active elements into civil structures S A Austin, R M Goodall and J S Nolan Loughborough University, UK	251

SESSION (8) IMPLICATIONS FOR RELIABILITY

16.20	Short term fatigue behaviour of composite materials containing embedded fiber optic sensors and actuators S S J Roberts and R Davidson AEA Technology, UK	255
16.40	Stress monitoring and re-adjustment in concrete structures C Abdunur LCPC, France	263
17.00	The influence of fiber optic sensors on the performance of advanced composite components N Fox, P Sheard, and S Steadman Pera International, UK	267
17.20	Evaluation of an optical signal response and failure mechanisms induced by the transverse shear deformation in smart structures A K Tay Ford Motor Company, USA D A Wilson and J R Houghton Tennessee Technological University, USA R L Wood TEXTRON Aerostructures, USA	277
	CAIO (Computer aided internal optimization): A powerful method to optimize fiber arrangement in composite materials R Kriechbaum, J Schäfer and C Mattheck Karlsruhe Nuclear Research Center, Germany	281
	Performance of fiber optic sensors in fracture mechanics applications A Shukla and R Singh University of Rhode Island, USA N Narendran Mechanical Technology Inc., USA	285

SESSION	(9) CONTROL & SIGNAL PROCESSING ISSUES	
08.30	Technological challenges with smart structures in German aircraft industry Chr Boller, H Hönlinger and O Sensburg MBB - Deutsche Aerospace, Germany	289
08.50	Smart health monitoring of aircraft structures using neural networks J N Kudva and N Munir Northrop Corporation, USA	t
09.10	Application of fuzzy control/neural networks to rendezvous simulation of space structure Y Matsuzaki, H Hosoda and S Abe Nagoya University, Japan	293
09.30	Identification and feedback control in structures with piezoceramic actuators H T Banks, K Ito and Y Wang University of Southern California, USA	297
09.50	COFFEE	
	Acceleration feedback method applied to active tuned mass damper I Nishimura, T Kobori, M Sakamoto, N Koshika, K Sasaki and S Ohrui Kobori Research Complex, Japan	301
	Control design for smart flexible structures R Katebi Strathclyde University, UK	305
	ARMA models for real-time system identification of smart structures R S Betros, N R Steffen and M J Triller TRW Space & Technology Group, USA	309
	Optimal location of structural control devices: A progressive collapse analogy J Holnicki-Szulc Polish Academy of Sciences, Poland F López-Almansa, J Rodeller and P Cruells Technical University of Catalonia, Spain	313
SESSION	(10) CONTROL SYSTEMS USING SMART TECHNOLOGY	
10.10	D.L.R.'s smart structures research programme E Breitbach D.L.R., Germany Invited Speaker	t
10.40	Optimal placement of piezoelectric actuators in adaptive truss structures R Lammering	317

X111

 D.L.R., Germany
11.00 The smart structures technology in the vibration control of helicopter blades in forward flight 321 F Nitzsche and E Breitbach D.L.R., Germany

† Paper not available at time of going to press

Х	IV

11.20	Influence of electrode size on the active suppression of sound reflection from submerged plates using distributed piezoelectric actuators P E Barbone Stanford University, USA A M B Braga Pontifícia Universidade Católica do Rio de Janeiro, Brazil	325
11.40	Smart structures with piezopolymers for space applications W Charon Dornier GmbH,Germany G Lindner and H Roth Fachhochschule Ravensburg-Weingarten, Germany	329
12.00	Active flutter suppression of a tube conveying fluid J Tani and Y Sudani Tohoku University, Japan	333
12.20	LUNCH Structural design of active precision structures W Charon Dornier GmbH, Germany	337
	The application of signal processing and knowledge based techniques to the health monitoring of gas turbine engines M N Brown, R Stewart and T Durrani University of Strathclyde, UK T Buggy BAeSEMA Ltd, UK B Rickman Dowty Maritime, UK	341
	An innovative class of macroscopically smart composite structural materials featuring both actuators and sensors M V Gandhi, B S Thompson and S R Kasiviswanathan Michigan State University, USA	345
	Smart slewing frames D J Leo and D J Inman State University of New York at Buffalo, USA	349
	Non-resonant systems for adaptive and smart structural control N Shaikh and Y Song University of Nebraska-Lincoln, USA	353
SESSION	(11) FUTURE DEVELOPMENTS IN SMART CONCEPTS	
13.30	Light emitting intelligent Langmuir-Blodgett films S Kurosawa, K Sugai and S Miyata Tokyo University of Agriculture and Technology, Japan Invited Speaker	407
14.00	Smart structures and intelligent materials for biomedical applications G W Hastings University of London, UK Invited Speaker	357

XV

14.30	Simulation of the dynamic behaviour of polymeric gels W R Witkowski, D J Segalman, D B Adolf and B Hance Sandia National Laboratories, USA	363
14.50	Smart materials which sense, activate and repair damage; hollow porous fibers in composites release chemicals from fibers for self-healing, damage prevention, and/or dynamic control C M Dry University of Illinois at Urbana-Champaign, USA	367
15.10	COFFEE Superionic conductors as smart materials: Foundations and areas for applications S Sigaryov Russian Academy of Sciences, Russia	373
	Multiple frequency interference in photorefractive media D E Cox and S S Welch NASA Langley Research Center, USA	379

SESSION (12) SMART TECHNOLOGY APPLICATIONS

15.30	Actuation strain decoupling through enhanced directional attachment in plates and aerodynamic surfaces R Barrett University of Kansas, USA	383
15.50	Adaptive/conformal wing design for future aircraft F Austin, G J Knowles, W G Jung, C C Tung and E M Sheedy Grumman Corporate Research Center, USA	387
16.10	Design and characterisation of a smart sensor/actuator sub-system for large flexible space structures D Uffen and H Scholaert AASTRA Aerospace Inc., Canada	t
16.30	Mechanical validation of smart structures A J Bronowicki, R S Betros, T W Nye, L J McIntyre, L R Miller and G R Dvorsky TRW Space and Defense, USA	t
16.50	In-situ acoustical and optical waveguide sensors C V O'Keefe, B B Djordjevic and B N Ranganathan Martin Marietta Laboratories, USA	391
	Material processing diagnostic by optical interferometry P Vavassori and M Martinelli CISE Tecnologie Innovative, Italy	395
	Use of electro-rheological fluids for adaptive vibration isolation R J Randall and W F Tsang Royal Naval Engineering College, UK	399

† Paper not available at time of going to press

Transient response of an anisotropic solid Y Wang and R K N D Rajapakse University of Manitoba, Canada	403
Author Index	417
Keyword Index	419