
SVChecker: A deep learning-based system for smart contract

vulnerability detection

Ye Yuan#a, Tongyi Xie*a,b
aSchool of Computer Science and Technology, Beijing Institute of Technology,

Beijing 10081, China; bAcademic Affairs Office, Guangxi College of Education, Nanning, Guangxi

530023, China

ABSTRACT

The detection of smart contracts vulnerability is a valuable research problem because smart contracts hold a huge amount

of cryptocurrency. In the past, popular detection tools were mainly based on some traditional techniques such as fuzzing

and symbolic execution, which rely on fixed expert features or patterns and often miss many vulnerabilities. Recent

machine learning approaches alleviate this issue but do not notice the semantic information in the source code. In this

paper, we develop a system called SVChecker to classify the smart contract source code written in Solidity. To show the
superiority of our system, we conduct experiments on more than 40,000 smart contracts collected from Ethereum.

Empirically, our experimental results demonstrate that our system outperforms all popular detection tools.

Keywords: Solidity, vulnerability detection, deep learning

1. INTRODUCTION

Since Satoshi Nakamoto first proposed the concept of Bitcoinin 20081, decentralized cryptocurrencies have begun to

flourish and have attracted more and more people’s attention. Cryptocurrency is a digital currency, what’s more, which

is not controlled by the central bank but decentralized through blockchain technology. That means users can maintain

shared data through a specific consensus protocol in the cryptocurrency network, thereby achieving secure transactions.

In recent years, the use of blockchain technology has surpassed peer-to-peer transactions, which is inseparable from the

application of smart contracts.

Smart contracts are programs running on blockchains and can perform trusted transactions without a third party2.

Ethereum is the most popular public blockchain platform for running smart contracts3. Besides, due to the immutable

nature of blockchain, once a smart contract is deployed on the blockchain, it cannot be modified. Nowadays, more and

more transactions on Ethereum are executed automatically through smart contracts. Not only that, with the help of smart

contracts, we can develop various types of decentralized apps on Ethereum.

However, because of the enormous economic value brought by smart contracts, it has also attracted the attention of

attackers. The solidity language is the most common high-level language used to write smart contracts on Ethereum4.

Programmers write smart contracts, and programmers cannot guarantee that their code will be executed without

vulnerabilities. Coupled with the unmodifiable nature of smart contracts, this leads to a tremendous economic threat once

smart contracts are attacked. Therefore, more and more researchers are diving into detecting vulnerabilities in smart

contracts. In this paper, we propose a deep learning-based system for vulnerabilities detection of smart contracts written

in Solidity language.

Contributions. Our contributions are:

• We propose a method to extract specific code snippets from Solidity source code and label them malicious or benign.

This kind of code snippet can focus on the data flow of a particular variable. Also, our approach can help generate a

dataset that is more suitable for deep learning model training. We release that dataset at the link below.

• We present the design and implementation of a deep learning-based smart contract vulnerabilities detection system,

called Solidity Vulnerability Checker, for source code written in Solidity language. This system can extract the code

#yuanyemse@gmail.com; *28922111@qq.com

International Conference on Computer Application and Information Security (ICCAIS 2021),
edited by Yingfa Lu, Changbo Cheng, Proc. of SPIE Vol. 12260, 122600W · © The Authors.

Published under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.2637775

Proc. of SPIE Vol. 12260 122600W-1

snippets we defined and check the code snippets have vulnerabilities or not. To facilitate future research, our

implementations are released at https://github.com/yesmola/SVChecker.

• We evaluate the results of our system with the public smart contracts dataset Smartbugs and Smartbugs-wild5 in two

ways. On the one hand, we compared our approach with directly using the entire source code as input. On the other hand,

we demonstrate that SVChecker outperforms the existing tools, achieving a higher precision, compared to tools

including Oyente6, Securify7, Slither8, and Smartcheck9.

2. RELATED WORK

Existing work on smart contract vulnerability detection can be divided into two categories: conventional detection

methods and machine learning-based methods. For conventional detection methods, Contract Fuzzer10 identifies

vulnerabilities by fuzzing and runtime behavior monitoring during execution. Oyente is one of the representatives of

symbolic execution tools. The common feature of such tools is that they have poor detection effects for new types of

vulnerabilities. For machine learning-based methods, Zhuang et al.11 introduced a novel temporal message propagation

network (TMP) and a degree-free GCN (DR-GCN) to automatically detect smart contract vulnerabilities. Eth2vec12 is a

machine learning-based static analysis tool for detecting code rewriting attacks particularly. And it uses Ethereum

Virtual Machine bytecodes as input rather than Solidity source code.

3. DESIGN OF SVCHECKER

In this section, we present the Solidity Vulnerability Checker (SVChecker). Our objective is to design a vulnerability

detection system for smart contracts written in Solidity Language. Our system takes a smart contract source code as input

and then tells whether it is vulnerable or not. The overview of the proposed system is illustrated in Figure 1, which

consists of two phases: (a) training phase; and (b) detection phase. In detail, the SVChecker can be divided into three

core modules: (1) code snippets extraction; (2) deep learning model; and (3) detector for unknown source code. In the

following content, we will give a detailed explanation of the functions of these three core modules.

3.1 Code snippets extraction

We represent the source code as vectors that can include more contextual semantic relations. However, directly using the

entire source code is not a good choice because there is much irrelevant information. To make our system do well, we

first propose transforming programs into a representation of code snippets. We observe that two reasons cause most

vulnerabilities in smart contracts: (1) incorrect operations of variables, like integer overflow; (2) improper use of API

function calls, like timestamp dependency and reentrancy. For example, incorrect add operations to a uint type variable

may cause integer overflow and improper uses of call.value (a Solidity API) may cause reentrancy. In addition, we

believe that the statements of Library and Event in Solidity source codes will not cause vulnerabilities, so we just ignore

them.

Figure 1. Overview of SVChecker.

Proc. of SPIE Vol. 12260 122600W-2

Based on this fact, we design the work flow of code snippets extraction. Figure 2 shows an example of that. Firstly, we

extract multiple program slices for each global variable and its corresponding functions. In a sense, this kind of program

slice can reveal more semantic information. Secondly, we generate the code snippets from the extracted program slices.

We notice that most functions and variables' identifier naming is meaningless and has nothing to do with vulnerability.

Therefore, we normalize the program slices by mapping user-defined variables and functions to symbolic names (e.g.,
“VAR1”, “FUNC1”) one by one. Thirdly, we label the vulnerable code snippet as “1” and label the non-vulnerable code

snippets as “0”. If a code snippet contains a vulnerable line, it is defined as vulnerable; otherwise, it is non-vulnerable.

The data of vulnerable lines can be found in the training dataset.

Figure 2. An example of work flow of code snippets extraction.

3.2 Deep learning model

We adopt Word2Vec13 for the extracted code snippets to encode their tokens into feature vectors. The reason why we
choose Wrod2Vec is its widespread use and excellent performance in the field of text classification14. It can convert a

token to a fixed-length vector. Moreover, we set a hyperparameter τ as the fixed size of vectors corresponding to code

snippets for subsequent model training. When the number of tokens in the code snippet is greater than τ, it will be

truncated; otherwise, it will be filled with 0.

To learn richer contextual information in the code snippets, we introduce a model based on Transformer-Encoder as the

next stage. The encoder is composed of six identical layers. Each layer has two sub-layers. The first is a multi-head self-

attention mechanism, and the second is a position-wise fully connected feed-forward network15. Transformer has been

proven to achieve surprising results on multiple natural language processing tasks16. Source code vulnerability detection

can also be seen as an NLP task. After that, we use a fully connected layer to map high-dimensional vectors to low-

dimensional ones for the final classification task.

3.3 Detector for unknown source code

Our system aims to determine whether the unknown Solidity source code is vulnerable. So, after the training phase, we
design the detection phase. During the detection phase, we use an unknown Solidity source code as input. Same as the

training phase, this source code is also extracted into multiple code snippets. Each of them will be tested through the

trained neural network and then get a result. In other words, one program will get a list of results. If all the results are

non-vulnerable, the source code is non-vulnerable. But even if there is only one vulnerable result, the source code is

vulnerable.

4. EXPERIMENTS AND RESULTS

In this section, we empirically evaluate our system on two public datasets, namely Smartbugs and Smartbugs-wild. Our

experiments focus on answering the following three research questions (RQs):

 RQ1: Can the Code Snippets Extraction module make SVChecker do a better job?

 RQ2: How effective is SVChecker when compared with other vulnerability detection tools forsmart contracts?

Proc. of SPIE Vol. 12260 122600W-3

 RQ3: Can SVChecker deal with multiple types of vulnerabilities at the same time?

4.1 Experimental settings

Dataset description. The first step of our experiment is to collect enough data. We use two datasets, including

Smartbugs and Smartbugs-wild.1) Smartbugs. Smartbugs is a curated dataset that contains 143 annotated contracts with

208 tagged vulnerabilities that can be used to evaluate the accuracy of analysis tools. 2) Smartbugs-wild. Smartbugs-wild
is a dataset with 47,398 unique contracts from the Ethereum network. But these smart contacts are not labelled. To solve

this problem, we use Oyente to pseudo-label this dataset.

Implementation details. All experiments are conducted on a computer equipped with an Nvidia GeForce RTX 3090

GPU. The code snippets extraction is implemented with C++ (GCC version 9.2), while the neural networks are

implemented with Python 3.7 and Pytorch 1.7.0. For training, we use 40,000 smart contracts from Smartbugs-wild and

split them into 80% as a training set, 20% as a validation set. For evaluation, we use 4,000 smart contracts from

Smartbugs-wild and all smart contracts from Smartbugs as the testing set. We use the Adam optimizer and cross-entropy

for the classification loss. More details of experimental parameters can be found in our released source code.

4.2 Performance comparison

4.2.1 Experiments for answering RQ1. In order to evaluate how effective the code snippets extraction module is. We

conduct two experiments on the Smartbugs-wild dataset respectively. One contains the code snippets extraction module.

Besides, for the sake of controlling the number of code snippets and maintaining the balance between positive and
negative samples, we limit the generation of negative samples (i.e., do not contain vulnerabilities). In total, we extracted

62,523 code snippets from 40,000 source codes, consisting of 32,362 positive samples and 30,161 negative samples. The

other just use the source code files directly.

We use the widely used Precision, Recall, F1-score, and Accuracy metric as the evaluation. As shown in Table 1, the

code snippets extraction module can make the SVChecker more effective. The improvement in each of the metrics is

substantial: 1.2% in Precision, 7% in Recall, 4% in F1-score, and 1.8% in Accuracy. Confusingly, our two experiments

detected different numbers of positive and negative samples for the same 4,000 samples. In order to find out this reason,

we conducted an in-depth analysis.

Table 1. Performance comparison of SVChecker with code snippets extraction or not.

System Number (P | N) Precision Recall F1 Accuracy

SVChecker (without CSE) 4,000 (2,841 | 1,159) 91.36% 90.29% 90.90% 92.53%

SVChecker (with CSE) 4,000 (2,235 | 1,765) 92.53% 97.23% 94.82% 94.35%

Finally, we observe that the Oyente tool incorrectly judged the add function in SafeMath Library as vulnerable (Figure 3).

However, our code snippets extraction module will not extract these pieces of code at all. This fact shows that this

module in our system is very useful from another point of view.

Figure 3. Possible bug found by Oyente.

4.2.2 Experiments for answering RQ2 and RQ3. In order to answer RQ2, we compare the effectiveness of SVChecker

with other vulnerability detection tools. At the same time, we use the Smartbugs dataset to test these tools. This dataset

provides a collection of vulnerable Solidity smart contracts according to the DASP taxonomy and contains ten different

types of vulnerabilities. We select six types of vulnerabilities for testing shown in Table 2. The first three types of

vulnerabilities appeared in our training set, while the latter three did not. In this way, we can also answer RQ3. We use

Proc. of SPIE Vol. 12260 122600W-4

the report provided by Durieux5 as the results of Oyente, Securify, Slither and Smartcheck. We illustrate the performance

of different tools in Table 2. It should be pointed out that the number of samples is different because of the upgrade of

Smartbugs.

Table 2. Performance of different tools on the Smartbugs dataset.

Category/tools Oyente Securify Slither Smartcheck SVChecker

Reentrancy 5/8 | 62% 5/8 | 62% 7/8 | 88% 5/8 | 62% 31/31 | 100%

Arithmetic 12/22 | 55% 0/22 | 0% 0/22 | 0% 1/22 | 5% 13/15 | 87%

Time manipulation 0/5 | 0% 0/5 | 0% 2/5 | 40% 1/5 | 20% 4/5 | 80%

Access control 0/19 | 0% 0/19 | 0% 4/19 | 21% 2/19 | 11% 10/18 | 56%

Unchecked

Low-level call
0/12 | 0% 3/12 | 25% 4/12 | 33% 4/12 | 33% 52/52 | 100%

Front running 0/7 | 0% 2/7 | 29% 0/7 | 0% 0/7 | 0% 2/4 | 50%

As we can see, the SVChecker has the best experimental result in detecting various types of vulnerabilities. And
detection rate is far ahead of other detection tools. We make following observations. First, the deep learning-based

system SVChecker outperforms the other pattern-based static analysis detection systems. Second, for the types of

vulnerabilities that Oyente can detect, the detection rate of the SVChecker exceeds 80%. Even for the types of

vulnerabilities that have not appeared in the training set, the SVChecker has a certain detection rate. We think it benefits

from the powerful learning ability of the Transform-Encoder. In contrast, the detection effects of other detection tools

perform poorly on Smartbugs.

5. CONCLUSION

In this paper, we present the SVChecker system for smart contract vulnerability detection. We propose a practical

method to extract specific code snippets from the source code, and this method can help the neural networks perform
better. We demonstrate that the SVChecker achieves high accuracy in detecting vulnerabilities compared to existing

popular detection tools and can deal with different vulnerabilities.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (No. 61962005) and Guangxi University

Young and middle-aged teachers’ basic scientific research ability improvement project (No. 2021KY1934).

REFERENCES

[1] Nakamoto, S., “Bitcoin: A peer-to-peer electronic cash system [EB/OL],” (2009).
https://bitcoin.org/bitcoin.pdf

[2] Zou, W., Lo, D., Kochhar, P. S., Le, X. B. D. and Xu, B., “Smart contract development: Challenges and

opportunities,” IEEE Transactions on Software Engineering, 47(10), 2084-2106 (2019).

[3] Wood, G., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum Project Yellow

Paper, 151, 1-32 (2014).

[4] Dannen, C., [Introducing Ethereum and Solidity], CA: Apress, Berkeley, (2017).

[5] Durieux, T., Ferreira, J. F., Abreu, R. and Cruz, P., “Empirical review of automated analysis tools on

47,587 Ethereum smart contracts,” 530-541 (2019). arXiv:1910.10601

[6] Luu, L., Chu, D. H., Olickel, H., et al., “Making smart contracts smarter,” 2016 ACM SIGSAC Conf.,

254-269 (2016).

Proc. of SPIE Vol. 12260 122600W-5

[7] Tsankov, P., Dan, A., Drachsler-Cohen, D., et al., “Securify: Practical security analysis of smart contracts,”

Proc. of the 2018 ACM SIGSAC Conf. on Computer and Communications Security, 67-82 (2018).

[8] Feist, J., Greico, G. and Groce, A., “Slither: A static analysis framework for smart contracts,” 2019

IEEE/ACM 2nd Inter. Work. on Emerging Trends in Software Engineering for Blockchain (WETSEB), 8-

15 (2019).
[9] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., et al., “SmartCheck: Static analysis of ethereum smart

contracts,” IEEE 1st Inter. Work. on Computer Society, 9-16 (2018).

[10] Jiang, B., Liu, Y. and Chan, W. K., “ContractFuzzer: Fuzzing smart contracts for vulnerability detection,”

33rd ACM/IEEE Inter. Conf. on Automated Software Engineering (ASE), 259-269 (2018).

[11] Zhuang, Y., Liu, Z., Qian, P., et al., “Smart contract vulnerability detection using graph neural network,”

Twenty-Ninth Inter. Joint Conf. on Artificial Intelligence and Seventeenth Pacific Rim International

Conference on Artificial Intelligence, 3255-3262 (2020).

[12] Ashizawa, N., Yanai, N., Cruz, J. P., et al., “Eth2Vec: Learning contract-wide code representations for

vulnerability detection on Ethereum smart contracts,” 47-59 (2021). arXiv:2101.02377v2

[13] Church, K. W., “Word2Vec,” Natural Language Engineering, 23(1), 155-162 (2017).

[14] Lilleberg, J., Yun, Z. and Zhang, Y., “Support vector machines and Word2vec for text classification with

semantic features,” IEEE Inter. Conf. on Cognitive Informatics & Cognitive Computing,136-140 (2015).
[15] Vaswani, A., Shazeer, N., Parmar, N., et al., “Attention is all you need,” 5998-6008 (2017).

[16] Wolf, T., Debut, L., Sanh, V., et al., “Transformers: State-of-the-art natural language processing,” Proc. of

the 2020 Conf. on Empirical Methods in Natural Language Processing: System Demonstrations, 38-45

(2020).

Proc. of SPIE Vol. 12260 122600W-6

