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ABSTRACT
Last generation of digital printer is usually characterized by a spatial resolution enough high to allow
the designer to realize a binary CGH directly on a transparent film avoiding photographic reduction
techniques. These devices are able to produce slides or offset prints. Furthermore, services supplied by
commercial printing company provide an inexpensive method to rapidly verify the validity of the
design by means of a test-and-trial process. Notably, this low-cost approach appears to be suitable for a
didactical environment.
On the basis of these considerations, a set of software tools able to design CGH’s has been developed.
The guidelines inspiring the work have been the following ones: a) ray-tracing approach, considering
the object to be reproduced as source of spherical waves; b) Optimization and speed-up of the
algorithms used, in order to produce a portable code, runnable on several hardware platforms.
In this paper calculation methods to obtain some fundamental geometric functions (points, lines,
curves) are described. Furthermore, by the juxtaposition of these primitives functions it is possible to
produce the holograms of more complex objects. Many examples of generated CGHs are presented.
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1. INTRODUCTION
Thin layers of transparent films, whose optical path is controlled by means of thickness or refractive
index variations, are used to make Diffractive Optical Elements (DOE). The way in which DOE works
is simplified in Figure 1.

Figure 1. Ray-tracing generation of a CGH
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In the figure, two beams start from the source S and attain the optical element OE in Yi and Yj . They
supply contribution to the image P of S only if they have in P the same phase. The elements of OE
located in Yi and Yj work as phase advancer elements. In particular, the following equation must be
valid:

Ps+Por —@p=0 (1)

where ¢, @05, @ are the phase differences respectively in the optical path Ly, in OE and in L.
Thus, the phase difference in an arbitrary point of OE is given by:

2r 27
Pos, = —~ L,- o L @

Eq. (2) assume the initial phase of rays coming from S equal to zero.

A CGH (Computer Generated Hologram) is an hologram generated by a computer and fabricated under
computer control. It is produced by recording the interference pattern formed by two coherent optical
wavefronts, referred as reference wave and object wave. The computer calculates the interference
pattern that would be produced by object and reference function. The information is sent to a device
recording the data as either grey or phase levels in an optically transparent film.

The phase delay in each pixel of the CGH is given by Eq. 2 and it is used to obtain the intensity of
interference fringes. The fringe intensity in a point ¥j of the hologram plate, is the well known cosine
law expressed, apart from some constants, by the simplified equation:

I(yj)= 1+cos((p05j) (3

This equation concerning a single image point, may be extended for complex images representation.
The calculation methods use Fourier-Fresnel transforms'*>***%7 or ray-tracing algorithms. In both cases
the image to be reproduced is considered as a light source whose phase relations with the reference
beam must be calculated in the hologram plane. If the object is far from the hologram plane or it is
produced in the focal plane of a lens, a Fast Fourier Transform technique is used. When the object is in
a plane near the hologram, Fresnel transform or ray-tracing algorithms will be used.

In this paper, only the ray-tracing approach is considered, because of its didactical evidence and
simplicity. Furthermore, if the image is considered formed by several single points, for each of them a
separate phase map is obtained. Detailed information about this procedures are discussed in following
sections.

2. RAY-TRACING METHODS
In a set of points forming an extended object, the corresponding intensity pattern is given by the
superposition of each pattern. The total intensity pattern I;,; comprises three components as shown in the
following equation:

L =|E[ +|E[" +2R {E,E}} (4)

The total object field is represented by:



Npts a

E,= Z}r—pexp(iqﬁp) o)

Nps is the numbers of object points, each of them has an associated real-value magnitude a, and
phase ¢, = kr, where r,, is the distance from the object to the hologram.

The reference beam in the case of a point source is:

E; = %’iexp(iqﬁk) (6)

r

The first and the second terms of Eq. (4) are related respectively to the object waves and to the reference
wave intensity. Since the reference beam is stronger than object beam, the first term is negligible. The
second term represents a bias increasing its intensity throughout the hologram.

The third term contains all the information needed to reconstruct the image, it is numerically simpler to
compute and has the advantage of containing neither object self-interference nor bias components®?.
After some simplifications, the final equation is:

1<K, +z‘;_fcos[¢,, ~ 2] (7)

p=1"p

This is the basic expression used to calculate the hologram fringes. K, is a normalization factor used
to make positive all pixel values.

3. RAY-TRACING GENERATED ELEMENTARY FUNCTIONS
The following paragraphs show the analytic definition of some elementary functions whose expression
is representable with ray-tracing methods !'%!" 121314,

3.1 Image of a point
If the coordinate of the image plane and of the hologram plane are respectively (1, &) and (x, y), a

collimated laser beam impinging on the hologram plane at an angle 6 varies its phase value according to
the following equation:

2
br = —;—t-xcos& ®)

In the case of a plane wave normally incident on the hologram plane, ¢, is a constant. The phase
difference on each hologram pixel is determined by the expression:

00 =Z o= E) v+ ®
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where &g, 1o, Zo are the image point position .

3.2 Image of a line with rotation o and tilt y

2 2 2
o, =7”J(y'~€o) +(x=7,) +2 (10)

where:

&y'=E&ycosa—n, sina
ny'=¢ysina + i, cosa
x'=xcosa - ysina
. . L
y'=(xsina + ycosa)-| 1-—
Lhol

Z, =2z, —y'tany

where &y , o € 2o are the coordinates of the middle point of the line. L is the line length and Ly,
represent the hologram side length. Rotation and tilt of the line are respectively o and y.

3.3 Image of an helicoid with axis parallel to y hologram axis

2
o, =7”\/(x—x,,,_,,)2 +y? +(z-2) (11)

where:

xhel = hel cos(n : ﬂ )
Zyet = Thet €OS(12- )

y
p=2r+—
Lhol

n is an integer, it changes the helix step. 7,; represent the helix radius.

3.4 Aspherical surface

A wide variety of lenses can be holographically generated. The optical paths differences characterizing
an aspherical surface are expressed by optical path variations z,,!"> '¥; the corresponding phase
differences are defined by ¢, =2nz,,/A, where z,, is given from the following expression:

_ cS?
L+[1-(K +1)e’s?]

—+ A,S* + 4,5° + 4,5 + 4,5" (12)

Zy

where:



SZ =x2 +y2
c=1/r.

r is the curvature radius, A, Az, A3, A4 are the aspheric deformation constants of the surface; K is the
eccentricity coefficient. Its value determines the conic surface type according to the following table:

(K <-1 Hyperboloid
K=1 Paraboloid

$—-1< K <0 Ellipse rotated about its major axis
k=0 Sphere

K>0 Ellipse rotated about its minor axis

3.5 Axicon
The cone-shaped axicon can be efficiently represented by approximating it with an hyperboloid of
suitable curvature”). The equation representing K and c are given by:

K=—(1+tan2 0)<—1 (13)
o
kb

6 e b are the cone aperture and the distance between the cone and hyperboloid vertexes.
3.7 Anamorphic aspherical surface

2 2
cx +c,y

Zy = +y(x,y)
U1 K - (14 K )] (14)

where ¢, and cy are the curvatures along x ad y axis respectively and K, and K, represent the

eccentricity along the coordinate axes. W(x,y) is a function including the bidimensional 4th, 6th, 8th,
10th order deformation from conic !"®.,

5. THE SOFTWARE TOOLS

A severe limitation concerning the practical generation of CGH is inherently represented by the
complexity of calculations required from their definition. The use of Eq. (7) strongly decreases the
computing time without sensible loss of accuracy, but with the use of a last-generation personal
computer is possible to obtain reasonable execution times, extending the application fields.

The dedicated software tools have been developed taking into consideration portability on many
platforms, from PC’s to workstations. With regard to PC’s, two versions have been released, running
under Linux and DOS respectively.
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The Unix version makes is provided of an X11 interface, developed by Forms Library"®. The library is
compatible with ANSI-C compilers and it is available for many Unix platforms. We tested the
procedure on HP-UX 9.0 and Linux 2.0.27 operating systems. A sample of the input screen is shown in
Figure 2.

Figure 2. The main procedure input screen

In order to maintain as long as possible the advantages of the 32-bit architecture, source code has been
ported on the DJGPP compiler, to produce a DOS executable. In this case, a more simple user interface
has been developed, based on alphanumeric screens.

The procedure allows the user to combine the available primitives function described in Section 3
(points, lines, curves...) composing more complex objects, defined trough their components.

For each of them, the corresponding hologram is stored in a temporary buffer; the final hologram is
obtained as normalized sum of the partial component holograms.

Each buffer is a double precision array containing the amplitude values of the hologram. The size of the
holograms is limited by the amount of the available RAM. A typical working size is 1600x1600 pixel.
In order to generate a binary CGH, good results were obtained thresholding the resulting grey-levels
pattern. In the described procedure this task is accomplished by means of a dedicated algorithm
allowing the user to specify the threshold method.

The resulting raster file is exported to the more common graphic file formats (TIFF and TGA).

In most cases, the computing times are satisfactory from a practical point of view. Table 1 shows a
comparison between different platforms in typical applications.

Computer Hologram type
4 point hologram | 2 lines hologram aspheric lens 32 points helicoid
486 DX2 66 MHz 18 25 35 135
Unix workstation 8 12 15 60

Table 1. Computing times on different platforms in seconds for 800x800 pixel holograms.




6. PRINTING TECHNIQUES
The basic assumption underlying this work is the possibility to print the CGH’s with a low cost device.
Several printing devices have been investigated from this point of view. To realize binary holograms,
an initial choice can be a commercial laser printer. These devices are commonly characterized by a
spatial resolution of 600 dpi (dots per inch), corresponding to 40 p about. This value is not good
enough to get a good resolution CGH. Enhanced laser printers have a resolution of 1200 dpi, that is
~20 p of resolution, with a slightly added purchasing cost.
Albeit it is possible to get some results with such printers, more resolution is requested to have a
practically usable CGH. A good tradeoff between cost and performances is represented by the use of
two kind of devices: digital slide printers and offset printing systems.
The last generation of digital slide printers allows the user to print on a photographic film with a
resolution up to 4096 points. At 1 pixel/point, by choosing the right orientation, it is possible to achieve
an equivalent resolution of 5.8 p. Anyway, the obtained results by means of commercially available
photographic films show a lower resolution due to emulsion grain.
A better alternative to produce low-cost CGH’s is given by offset print. The typical resolution is 3600
dpi, corresponding to a pixel size of 7 p about. With such devices it is possible to produce a general
purpose hologram, i.e. a CGH able to diffract the incident light at angle not too close to the zero-order
beam (tipically 3 degrees).
The offset technique is usually employed for high-quality typographic prints recording binary CGH’s on
acetate sheet. The typical hologram size obtained with this resolution is 11.2 mm x 11.2 mm
corresponding to an image of 1600x1600 pixels. These techniques produce amplitude holograms whose
efficiency is around 6%. One can use a standard optical hologram copying setup to copy the amplitude
hologram into a phase medium, such as photopolimer (by DuPont) or photoresist, increasing the total
efficiency.

7. RESULTS

Some holograms of the described objects before the binarization procedure are shown in the next
figures. In order to have a good-quality reproduction, their size has been reduced to 400x400 pixels,
working wavelength being 632 nm.

Figure 3 represents an anamorphic aspheric lens generated according to Eq. (14). Figure 4 shows the
CGH of a 2 mm length line rotated of 45° and tilted of 0.1°. The image is formed 400 mm far from the
optical element. Figure 5 shows the CGH of two segments normally incident in their centre. Figure 6
shows the CGH of four spots generated by a multifocal lens. Figures 7a and 7b show a 16-points
cylindrical helix along with the corresponding CGH. Axes 1, &, z are relative to the points position in
the image space.

8. CONCLUSIONS

An integrated software tool able to generate binary CGH’s with ray-tracing methods was developed.
The procedure allows the user to design and test CGH’s controlling their geometrical and physical
parameters. The source code was successfully ported from workstations to PC’s and compiled under
DOS, Linux and Unix platforms. The computing times are reasonable when considering few
centimeters holograms. The output format is compatible with most of the printing devices.

With regard to the physical realization of the holograms, digital slides printer and offset technique were
tested. Better results were obtained with offset technique. Although the obtainable resolution allow the
reconstruction of the objects mostly in proximity of the optical axis, their visibility is very good. The

399



N

Flgure 3 CGH of an Anamorphlc Figure 4. CGH of a rotated (45°) and tllted
Aspheric lens (0.1°) line
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Figure 7a). A cylindrical helix made of 16 points

Figure 7b). The corresponding CGH
of the cylindrical helix
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presented technique represent the best practical trade-off from cost and performances point of view.
Therefore, we suggest the use of this techniques mainly in training and educational environments.
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