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ABSTRACT
We present three recent developments in wavelets and subdivision: wavelet-type transforms that map integers to
integers, with an application to lossless coding for images; rate-distortion bounds that realize the compression given
by nonlinear approximation theorems for a model where wavelet compression outperforms the Karhunen-Loève
approach; and smoothness results for irregularly spaced subdivision schemes, related to wavelet compression for
irregularly spaced data.
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1. INTRODUCTION
Wavelets have emerged in the last fifteen years as a synthesis of ideas from fields as different as electrical engineering,
statistics, physics, computer science and (yes!) mathematics. Wavelet transforms have beautiful and deep mathe-
matical properties, making them a well-adapted tool for a wide range of functional spaces, or equivalently, for very
different types of data. On the other hand, they can be implemented via fast algorithms, essential to convert their
mathematical efficiency into a truly practical tool. There exist by now many books explaining the basics of wavelet
transforms (see e.g. Refs. 1-5 to mention only a few), so we shall give only a blitz review of their properties before
going on to some recent applications.

The simplest type of wavelet basis is given by dilates and translates

j,k(X) = 23/2 (23x — k) , j,k , (1)

of a single one-dimensional function i/'(x), the wavelet. Only for special choices of does the family {V-'j,k}j,ke give
an orthonormal basis for L2 (IR) ; nevertheless, many choices are possible, ranging from the most narrow solution

(x) = 1 for 0 < x < 1/2
—1 for 1/2<x<1

0 elsewhere

(the Haar wavelet) to choices for i that are infinitely many times differentiable, but that are much wider (namely,
supported on the whole real line). Intermediate possible choices also exist, where still "lives" on an interval (albeit
wider than [0,1]) and is k times differentiable. All interesting wavelet bases are associated with a multiresolution
analysis: there exists a partner function , the scaling function, used to build approximation spaces 1'

v = Span{q53,k ; kE }, (2)

corresponding to different resolutions (V3 has resolution 23); the different V are nested in each other,

...cvjcvj+1c..., (3)

and in each Vj, the {qj,k}kEz are an orthonormal basis; the link with the wavelet basis is given via

Projv1f = <1, j+1,k > j+1,k (4)

= Projvf + <1, j,k > j,k.
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The different nesting and orthonormality properties listed above cause the functions ç/ and i/ to be linked via relations
of the type

çt(x) = V' : h q(2x—n) (5)

(x) = : g q5(2x — n).

The coefficients h, g in these equations play an important role in practical implementations (in fact, they are all
one really needs to implement an orthonormal wavelet transform), as well as in some mathematical constructions.

The simple scheme sketched above has been extended and generalized in many directions: biorthogonal(rather
than orthonormal) bases, bases in n (rather than 1) dimensions, on an interval (rather than the wholeline) , on
domains in JR (already a more complex situation, requiring deft mathematical manipulations), using more than 1
wavelet even in 1 dimension (multiwavelets), using other dilation factors than 2, (or even dilation matrices), etc.. . We
refer to the by now large literature or to the wavelet digest (<http : //www .wavelet . org>) for more details.

In this paper we shall touch upon a few recent developments or applications. In particular, we shall talk about
wavelet-like transforms that map integers to integers; about a model that illustrates why wavelet compression of
stochastic processes can be superior to Karhunen-Loève approaches; and about a generalization of wavelets useful
for non-uniformly spaced data.

Two of these applications make use of "lifting", a particularly simple way to implement wavelet transforms. In
its simplest form, the lifting implementations correspond to a factorization of the polyphase matrix for the wavelet
filters, as explained in the tutorial article by Sweldens and the author. Lifting also has, in somecases, a very
interesting interpretation which makes it possible to generalize to e.g. the non-uniform setting, where the filters
are time- or space-varying, and factorization is no longer applicable. Every step in the wavelet filtering splits the
approximation s3, of the data at multiresolution level j into a coarser approximation s3_i and detail information
d1 by the formulas

sj_1,1 = >hk_2fl Sik , d3_1,1 = >gk—2n Sj,k , (6)

which follow from (4) and (5). In the lifting interpretation, (6) is viewed as the result of several intermediatesteps:
the Sj,k are split into "even" samples (to be retained, at least for the initial stage), and "odd" samples (to be replaced
by information in 31 and discarded in Sa_ 1 ) from the even Sj,21 one can then compute a possible extension to all
the Sj,k (via a pre-arranged formula) which will, in places wheres3 does not have a lot of structure, give quite good
"guesses" for the odd 8j,21+1 next, one looks at the difference between the "true" odd j,2t+1 and the "predicted"
odd 8j,21+1 this difference is the detail information d3 ; finally, one has to adjust the even Si,21 to correct for aliasing,
leading to the si— 1,1 (See Ref. 7 for more details).
A few examples:

the Haar transform:

classically:
Si_1,1 = (si,21 + Sj,21+1)

d_1,1 = (—sj,21 + Si,21+1).

lifting:
{s,i} —f e_1,1 = Sj,21 —f e_11 =

e?_i,i
= = —

e_1,1 = + sj_1,j = e_1,1
2 1 .z _1 2

°j—1,1 — °j—1,1 ajl,1 —

the 2-2 biorthogonal transform:

3



•suuojsui: 0IAM 1OUi jqiAU U SflSOi iOJOJOTJ pu ds 
ioq:oTfl3 s jo qnoq oq uo sqj ozuijp pu uoppoid siq jo oouijp oq iou s u!3Wo ssd 

ou otj S0flIA UOA Tb poseq pndmoD s ouijjp oq jo uoppaid qoqt u os pqq i pp :ures 
oq s qoq puqoq op oqj 1tniojsui d+S -i P' 11wiojsuq s :psodoid uq Aq wiojSui g jo 

suoizTI1uo OAL UiSO flOq!A pu uo!Tt?3UnJ AIdw!s -'T WJOJSUit iOU U uqo u o o 
. l'O l'Ip = 

[ g/7'Tp — 
l'TS = 

:uuo;su1 piioj oTj JO SUS 
pire iopio OSJAU :siAui MJ: AIV!P0mm! pu1J o Sn SMOffI U!J!I '1U1-UOU ! AOU wiojsirei qnoTp UaA 

. [/1"p1 + l'O 
l'OS — I+7O = l'ip 

:dos puozs u UO!SA!P Aq miojsirn iau u ou () auiqo uo o 
. i'i—cp + 7'c 

() i's — i+i'! = :(L) jo wioj 
uvmi TflOiJ IS O ! W1OJSUi S pni:suoz o 2cM AS uy •Si!p uo!2uwoIdm! i-'! 'P-' U!2OJflp 'SX 

T_uioJSUJ S -1 JO SUO1IU [JOAOS 06q!ssod si ' (juonboS) miojsui g s uou 'uopnisuoo uizj ioUi O1OA JO OSUI UIflS M4 U!1Jfl3JO ITS iOJ JflWiOJ OT UT Oi Aq uo!S!A!p umo 
AIdWTS Aq UOISIOA 112 pnq U1 M AJSflOAq Aq UOS!A!P otI jo osnooq 'miOJSui JaU ui ou s sq 

' 1?;'cs 
— 

T+l'c9 = (L) 
( i+'! 7Cs) = 

U!uwp '\ Aq ozueuiiouoi,, OA fl UOA[ UIiOJSUJ 1H -P !4 )OOJ 

•SiovI! Aq ue Ajojdwoz ndno oq zpapiqo o jq oq o SOiOU! JO q pno 
:u JO UIpOD SSISSoI ioJ 'oA SOW1 iOJ S3 oq: s s 'siu jo sa3unbos jo ssuo ip ndu! j 'Sio:u! Jo SiSUOZ :ou op sndno poioflj '°iu pipus qi u!poz ssjsso usaiu AffepdS 

jg smiojsui ioouj 5°A rri pu SUOpJA M iv im JOJ UO peq s uopos siqj 
S'HaDaLNI OL S'HaDaJINI dVJA[ JJVIUI SWHOdSNV}LL aMfl-JIaTIAYM 

uoiii1ddg sij mo U! IflJOSfl q ifiM soino; osat tuiojsirei 
JOAU O S3W (ureoi4s ioio woij Apio uomioju usn 'pjpom on sppo,, oq io 

oq 1quo A1AO q0M U!) 'suo!ido jo oinu ow ppou oq Atu sds 
u!uire qns aiotxi 'sixuojSuii iqo .ioj ds ouo pu ppoid,, ouo Aq o 'SSD qoq uj 

. i'i_o=ç: 1'ICp l'Tco = l'T_o 

1'T—,A = ;'T—c _-. (1'To + '_7"—o) + l'T— = l'T— __ 

(I+1T—C + — = = 7110 

= 4— 7'c = -_ 7cs 

:rnjq 
(+73'Cs — i+i'c + = 

(+7'C — 1+7'c + l'c5 + 'i's + = 

V 



The TS transform turns out to be an integer version of the (3, 1) biorthogonal wavelet transform of Cohen-
Daubechies-Feauveau.13 J that transform, one has

d = SO,21+1 SO,21

Si,l = SO,21 + d1/2 (9)

d1,1 = d1 + Si,i_i/4 — si,i+i/4.
The coefficients of the prediction are chosen so that in case the original sequence was a second degree polynomial in
1, then the new wavelet coefficient d1,1 is exactly zero. The integer version or TS transform can now be obtained by
truncating the non-integers coming from the divisions in the last two steps:

d1 = S021+l O,2l

S1,j = SO,21 + d/2j (10)

d1,1 = d1 + [si,_i/4 — Si,t+i/4 + 1/2].
In the last step we add a term 1/2 before truncating to avoid bias; in the second step this is not needed because the
division is only by two. As the transform is already decomposed into lifting steps, the inverse can again be found
immediately by reversing the equations and flipping the signs:

d1 = d1,1
— Lsi,i_i/4 Si,l+i/4 + 1/2j

SO,21 i,i = [d/2j (11)

(1)SO,21+1 = a1,1 + SO,21

In the S+P transform (S transform + Prediction), the predictor for d1 does not only involveS1,k values but also a
previously calculated d1+1 value. The general form of the transform is

d1 = O,2l+1 —
SO,21

S1,1 = SO,21 + [d1/2j (12)

d1,1 = d1 + [a_l(Sl,l_2 81,1_i) + O(Si,i_i — Si,L) + i(Si,t Si,1+i) — di+1j
Note that the TS transform is a special case, namely when c_ = = 0 and a = ai = 1/4. Said and Peariman
examine several choices for (c, /3i) and in the case of natural images suggest c1 = 0, ao = 2/8, c = 3/8and =
—2/8. It is interesting to note that, even though this was not their motivation, this choice without truncation yields
a high pass analyzing filter with 2 vanishing moments.

Therefore, the lossless S, TS and S+P transforms can all be viewed as special cases of the lifting schemes,
truncating appropriately.

One can obviously also do this for the decompositions into lifting steps of other wavelet transforms. Twopartic-
ularly interesting examples are the following two transforms:

(4,2) interpolating transform

d1,1 = s0,21 — [9/16(80,21 + so,21+2) — 1/16(SO,21_2 + SO,21+4) + 1/2j

Si,1 = S0, + [1/4(d1,1_ + d1,1) + 1/2].
(2+2,2) transform

d1 = S0,21+i
—

L1/2(so,21 + so,2z2) + 1/2]

Si,i = S0,21 + [1/4(dJ_1 + d'1) + 1/2]

d1,1 = d — [a(—1/2si,i_i + Si,i — 1/2si,+)

+(—1/2 si,1 + Si,1+i — 1/281,1+2) + d'1+1 + 1/2].
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Without truncation, we want the scheme to have 4 vanishing moments. This leads to the following conditions:

83 + 3y = 1

4c + 43 + y = 1.

Special cases are: (1) a = 1/6,/3 = O,'y = 1/3, (2) c = 1/8,3 = 1/8,7 = 0 and, (3) c = 1/4@ = —1/4,7 = 1. In
our experiments we found that (2) works considerably better than (1) and (3), and this is what we use in practice.

These wavelet-like transforms, combined with an arithmetic coder, were used for lossless coding in Ref. 8, with
results that often improved on S+P, but that were still short of the best lossless compression results, obtained via
non-multiresolution methods. More recently these results were pushed further: work by N. Memon, X. Wu and B.L.
Yeo'4 shows how the use of context information in the coding improves these results, so that they become comparable
to the state of the art.

3. WAVELET COMPRESSION KARHUNEN.-LOEVE APPROXIMATION
This section is based upon joint work with A. Cohen, 0. Guleryuz and M. Orchard.'5 In theoretical models for the
mathematical study of compression, signals and particularly images are often viewed as realizations of an (unknown)
stochastic process. The corresponding Karhunen-Loève basis (KL) , as the orthonormal basis that optimally decor-
relates this process, i.e. the basis ("°)nEJN that minimizes Efls — (s, for every N, is then viewed
as the best possible basis to compress the signals or images. In practice, determining this KL basis exactly may be
cumbersome and computationally intensive, suggesting the use of a basis that is easier to work with and that is still
"close" to the KL basis, in the sense that it also decorrelates well (although not optimally). This has been argued
as a justification both for DCT methods and for wavelet transforms.

Although the usefulness of KL-bases is well documented and beyond dispute in many applications, there has been
a growing realization that optimizing decorrelation for the stochastic process may not be the final or even the most
important point in signal compression. In the terms of mathematical approximation theory, this corresponds to a
shift from linear approximation to non-linear approximation.

In linear approximation theory, given an orthonormal basis of functions pi ,2 , . . . , one seeks to estimate, as a
function of N, the truncation error

eN(f) - 1(1 - . (13)

The behavior of eN(f) as N increases gives us information about f and vice versa. For instance, if the ço are either
the Fourier basis on [0, fl or a wavelet basis (with its logical ordering), and if in (13) is taken to be the L2-norm,

IIM = (f01 Ig(t)I2dt) , then the decay of eN(f) characterizes the smoothness of f in an L2-sense: for instance,
eN(f) ç CN implies that f and its first k derivatives are all in L2. The error eN(f) can be rewritten as

eN(f) = distL2(f, SN),

where 5N 5 the linear vector space spanned by the first N basis functions,

SN Span(i,. .. ,N) —

{1cnn;cn E }.
The KL basis for a stochastic process fits within this linear approximation theory framework: it is the basis for which
E (distL2 (s, SN)2) is minimized, for every N.

Non-linear approximation of a function f, with the same orthonormal basis ,2, . . . as before, seeks to estimate,
as N increases, the decay of the distance between f and the best possible approximation to f by a linear combination
of p,, that uses at most N terms (as opposed to the best linear combination with the first N basis functions, as
before). That is, we now have

eN = dist(f,SN)

sn =
{cnn;cnEC#{n;cno}<N}.



The set SN is no longer a linear space (since the sum of two arbitrary elements of SN generally uses more that N
basis functions), hence the name non-linear approximation. Non-linear approximation has been studied in detail by
DeVore, Jawerth, and Popov; see e.g. their paper Ref. 16 for a review. Typically, different approximation estimates
are obtained by non-linear approximation than by linear approximation with respect to the same basis. Or, turning
this upside down, different behavior of f can be characterized by the same decay behavior as N —ooof the truncation
error in non-linear approximation versus linear approximation. Another manifestation of this difference is that for
stochastic processes, the KL basis need not be the basis that minimizes the non-linear approximation error.

The difference between linear and non-linear approximation was illustrated in Ref. 17 where a 1-dimensional
model of piecewise smooth processes, inspired by images, was analyzed. For this toy model, it was shown that the
expected non-linear approximation error using a wavelet basis is asymptotically superior (with a decay at least as
fast as CN for N — oc) to the best expected linear approximation error (this error, with respect to the KL basis,
is bounded below by CN112 for N —p oo), even though wavelets are not the KL basis for the stochastic process.

The success of wavelet bases in non-linear approximation, as analyzed in Ref. 18 and illustrated by the piecewise
smooth toy model in Ref. 1 7 was interpreted by mathematicians to be the "true" reason for the usefulness of wavelets
in signal compression, rather than their potential for decorrelation. Yet non-linear approximation estimates are still
a long way from a mathematical analysis that would be directly related to compression issues; the practice is not,
as suggested by non-linear approximation, to "compress" all the information into N coefficients, discarding all the
other information, and checking how well one does. A model closer to practice would estimate the error or distortion
given that all the information (truncated coefficients as well as the choice of which indices to retain) has to fit within
a certain bit budget. Such rate-distortion bounds are closer to the practice of coding for compression, and therefore
more convincing from the point of view of the electrical engineer.

On the other hand, coding techniques for compression have become increasingly sophisticated in the last few
years, steadily obtaining better results. Some of the improved strategies were inspired by, or can be heuristically
explained by mathematical arguments. Yet there exist no mathematical estimates for these coding strategies of the
same level of detail and depth as for the coding-wise more naive non-linear approximation theory.

In Ref. 15 we prove that the non-linear approximation results of Ref. 17 translate into the corresponding rate-
distortion bounds. In the case of nonlinear approximation, where the wavelet coefficients are "re-ordered" according
to how significant they are, we need to evaluate the bit rate necessary to encode the addressing of the different types of
coefficients. The bit rate comes thus in two parts: bit rate for the coefficients, and bit rate for the addressing. Unless
good coding strategies are used, it turns out that the addressing bit rate is dominant, and spoils the compression
given by nonlinear approximation theorems. It turns out that smart coding techniques can achieve the optimal rate
predicted by nonlinear approximation theory. In particular, we show that two coding strategies, which are applied
in practice (namely, a model which codes the coefficients as coming from a mixture of two distributions; and a
tree-coder) do achieve a rate-distortion band of the type

D< CR_a,

where a is the smoothness of the pieces in the piecewise smooth model of Ref. 17.

4. WAVELETS FOR NON-UNIFORMLY SAMPLED DATA
This section concerns joint work with I. Guskov and W. Sweldens.19 When wavelet bases are constructed via a lifting
scheme, as described above, the computation of the wavelet coefficients consists of a prediction step for the "odds"
from the "evens" , and a comparison of the true "odds" with these predictions. If the wavelet coefficients are zero —
i.e. if we are considering a scaling function —then the predictions are exact at all levels: to build a scaling function
for this scheme one thus needs only to iterate the prediction scheme level after level, generating an increasingly finer
sampling of the scaling function through a subdivision scheme. This approach (used, in fact, to plot all compactly
supported wavelets and scaling functions in e.g. Ref. 1) is not limited to the case where the sampling points are
uniformly distributed. Two types of non-uniform cases can be considered. In the semi-regular case, the original
samples ( "at level 0" ) are not equally spaced, but the subdivision scheme still introduces new grid points midway
between old ones. This scheme is used in computer graphics applications, where subdivision is applied to generate
smooth curves or surfaces. In the irregular case, new grid points need not be in the middle between old points, even
at infinity. This irregular setting comes up naturally in the case of compression of, or multiresolution analysis for,
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irregular samples. The user provides data, sampled on a closely spaced but irregular grid, which one can think of as
the "finest" level grid. Resampling onto a regular grid is typically costly and may generate unwanted artifacts. One
can then build a multiresolution analysis and an associated wavelet transform for the irregular grid, using the lifting
scheme, leading to spatially variant filters.7

It is then important to understand how smooth the wavelets are for these irregular scheme. As in the uniformly
sampled scheme, this smoothness is governed by that of the scaling functions, so that the question reduces to the
study of smoothness for irregularly spaced subdivision. Outside the context of spline functions, where there exists a
large body of work on splines for irregularly spaced knots, work on subdivision schemes for non-equally spaced grids
started only recently. The semi-regular case is completely understood in 1D,2° and also reasonably well understood
in the much harder higher dimensional setting.2123 The completely irregular case is much trickier. In Ref. 19
we develop techniques suitable for this more general case, and we concentrate on determining the smoothness for
the so-called four-point scheme. In the regular setting, this interpolation scheme was first introduced in Ref. 24
and Ref. 25. It consists in taking for the function value at a "new point" the value of the cubic that is completely
determined by the two nearest neighboring "old points" both on the left and on the right and their function values.
In the regular setting, where one starts from data at the integers (i.e. in Z), then computes interpolated values at
Z/2\ in a first stage, followed by an interpolation to find the values at /4\/2 in a second stage, etc. .. , the
cubic interpolation rule leads to

9 1
f(xj,2k+1) = [f(x_1,k) + f(x3_1,k+1)] — -f(x_1,b_1) + f(xj_1,k+2)] , (14)

where x3, =12 . In the completely irregular setting, the Xj,k are not given by this simple formula (although we still
view the process as a "refinement" ,so that Xj,2k = x_1,k), and (14) is replaced by a Lagrange interpolation formula
with coefficients that depend on the X3_1,k. In order to avoid refinement of our grid that would be too pathological,
we impose some conditions; introducing d3,k = Xj,k+1 — Xjk , we say the refinement procedure is homogeneous if, for
some < 00 independent of j, k,

max (d,k+1, d3,k+1) � 'I'd3,k for all j, k;

we say the procedure is dyadically balanced if, for some a < oo independent of j, k,

max (d3,2k, d,2k+1) � cmin (dj,2k, dj,2k+1) for all j, k.

The latter condition says that whenever an interval [x 1,k , x_ 1,k+11 is split by introducing a new point XJ,2k+1,
the split cannot be too lopsided; a = 1 reduces to the regular case. A homogeneous refinement procedure is always
dyadically balanced, but the reverse is not true. (See Ref. 19 for examples and a discussion.)

We prove in Ref. 19 that the refinement scheme based upon cubic interpolation always leads to a limit function
that is at least C1 if the multi-level grid is dyadically balanced. For a < 2, we even find that the limit function f is
almost C2 , in the sense that

f'(x + t) — f'(x)( Ct logt
a result that is well-known for the regular case, where it is optimal. The proof is fairly technical, and quite intricate
for the general dyadically balanced case. For the slightly less general homogeneous case, it simplifies considerably.
(See Ref. 19 for all details.)
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