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Hardware validated unified model of multibit temporally
and spatially oversampled image sensors with
conditional reset

Thomas Vogelsang,* David G. Stork, and Michael Guidash
Rambus Inc., 1050 Enterprise Way, Suite 700, Sunnyvale, California 94089

Abstract. We describe a photon statistics-based theoretical model of the response to incident light of an image
sensor and show that conditional reset and multibit temporal oversampling increase the dynamic range signifi-
cantly. This photon-based modeling approach describes the full image sensor design space of temporal and
spatial oversampling either with a binary comparison or with a multibit read of each sample. We find excellent
quantitative agreement between measurements on custom hardware and our theoretical predictions. We then
use this model to show what improvements in dynamic range and low-light response can be achieved by over-
sampling and what the limits of improvement caused by pixel size and lens parameters are. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.23.1.013021]

Keywords: image sensors; image reconstruction; photons; noise.

Paper 13310SS received May 31, 2013; revised manuscript received Dec. 4, 2013; accepted for publication Jan. 14, 2014; published
online Feb. 13, 2014.

1 Introduction
Over the past decade, CMOS image sensors have replaced
both photographic film and CCD image sensors in nearly
all imaging applications. During the same time, the advance-
ment of silicon process technology according to Moore’s law
has led to smaller and smaller pixels in many of these appli-
cations. In a conventional image sensor, a pixel is sampled
only once per exposure. The high end of the dynamic range
is therefore limited by the full well capacity of the pixel. The
low end of the dynamic range is determined by the minimum
amount of light required to generate a signal that can be dis-
tinguished from the combined photon noise and sensor read
noise. Modern image sensors have achieved sensitivities of a
few photo electrons.1

The method proposed by us and other work discussed
below apply oversampling to extend the dynamic range.
In contrast to a conventional image sensor, an oversampling
sensor combines multiple measurements of light intensity
into a single pixel value of the final image. These multiple
measurements can be distributed over space or over time
or both.

To overcome the limitation of the high end of the dynamic
range given by the reduced full well capacity and to make
better use of highly sensitive pixels smaller than diffraction
limit and with high sensitivity, Fossum2,3 and Sbaiz et al.4

proposed oversampling the incident light in space and
time, making a binary decision at each sampling event by
comparing the number of detected photons against a thresh-
old. The total number of photons can then be reconstructed
from the results (0 or 1) of multiple such binary samplings.
Yang et al.5 derived the theoretical limits of such binary over-
sampling based on photon statistics. All these proposals
assume samplings equidistant in time and pixel reset after

each sampling event and require a very small pixel with
close to single-photon sensitivity. In the remainder of this
paper, we will follow Ref. 3 by naming the binary sampled
element “jot,” reserving “image pixel” or simply “pixel” for
the aggregate that is used to form the final image. Vogelsang
and Stork6 expanded this binary oversampling approach to
be usable with less sensitive and conventional pixels and
to provide more control over the sensor characteristics by
the introduction of conditional reset and the variation of sam-
pling thresholds and sampling interval durations. This new
method fully resets the pixel instead of proportional to the
sampled signal, and the threshold comparison and condi-
tional reset is done at fixed times independent of the time
when the threshold is reached. The sensor response is there-
fore different from ΣΔ approaches (Refs. 7 and 8) to binary
oversampling.

Multibit sampling differs from these binary oversampling
approaches and has been shown to extend dynamic range as
well. Many of today’s cameras have a high dynamic range
(HDR) mode where multiple exposures with different expo-
sure times are taken and afterward combined into a final
image with extended dynamic range according to the pro-
posal by Debevec and Malik.9 Extension of dynamic range
in a single exposure can be achieved either by circuit tech-
niques in the pixel that modify the effective full well capacity
or by multiple samplings during light accumulation. Yang
and El Gamal compared some of these approaches in
Ref. 10. Multibit sampling at exponentially spaced time
intervals employing a pixel-level analog-to-digital converter
(ADC) has been further explored by Yang et al.11 The
sequence of effective sampling durations is monotonically
increasing since there is no reset during an exposure. This
limits the possibilities to shape the sensor response.

The conditional and selective per-pixel full reset of our
proposed method allows sampling of each pixel with the
optimum sample interval duration for the given illumination

*Address all correspondence to: Thomas Vogelsang, E-mail: tvogelsang@
rambus.com

Journal of Electronic Imaging 013021-1 Jan–Feb 2014 • Vol. 23(1)

Journal of Electronic Imaging 23(1), 013021 (Jan–Feb 2014)
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level without the need to add per-pixel decision circuitry or a
pixel-level ADC. The only addition to a pixel is one transistor
to enable column control of the reset in addition to the usual
row control. The method is, therefore, well suited for sensors
with small pixels.

Vogelsang et al.12 have shown a fundamental equivalence
between multibit oversampling of pixels and binary over-
sampling using virtual jots that have thresholds at the steps
of the ADC. As such, the same mathematical description
applies to these two apparently different approaches. The
mathematical representation of these approaches can be
used to optimize the design of oversampled image sensors
both for the expected light conditions and for the hardware
properties of the pixel technology that is available to manu-
facture the sensor.

The work presented here is organized as follows.
Section 2 describes our photon-based sensor model. The ana-
lytical model combining the theory of binary sampling first
presented in Ref. 6 and multibit sampling first presented in
Ref. 12 is described in Sec. 2.1, and the Monte Carlo
approach that is used when noise sources other than photon
shot noise need to be considered is described in Sec. 2.2.
Different sampling policies (sampling schedules and thresh-
old settings) are compared in Sec. 2.3, and an experimental
hardware validation of the model is shown in Sec. 2.4. We
then discuss in Sec. 3 how the photon-based sensor model
can be related to imaging situations in the real world by con-
necting scene illumination and camera parameters to the
image sensor parameters (Sec. 3.1) and use this relationship
to compare low light and dynamic range capabilities of con-
ventional digital cameras and cameras using the proposed
oversampling sensor (Sec. 3.2). Section 4 summarizes
our work.

2 Photon Statistics-Based Sensor Model

2.1 Analytical Model
The light intensity incident on a pixel of an image sensor is,
in general, represented as a digital number of a certain bit
depth. In a conventional image sensor, this bit depth is the
bit depth of the ADC used to sample the photodetector
response. The binary oversampling sensors discussed above
achieve their total bit depth through the number of spatial
and temporal binary samplings that are combined to form
the signal in an image pixel. Multiexposure HDR derives
most of its resolution through ADC bit depth but has some
temporal oversampling (unconditional or hard reset between
samples). The total image sensor design space can, therefore,
be viewed as a three-dimensional space with the bit depth of
the ADC and the amount of temporal and spatial oversam-
pling as the axes. Figure 1 illustrates this concept and shows
planes of constant total bit depth as well as the design space
used by different sensors. Our theory accurately models all
combinations of temporal and spatial oversampling as well
as ADC bit depth.

2.1.1 Binary sampling

Sensor operation. Each image pixel comprises a number
of binary sampled jots. At each sampling event, each jot
produces a single binary output (a 1) if its integrated expo-
sure exceeds a threshold θ and a 0 otherwise. If the jot pro-
duces a 1, then its integrated exposure is reset to 0; otherwise

its integrated photon signal is not reset (a nondestructive
read), as shown in Fig. 2. The threshold in each binary
jot can be varied in space or time to improve image
quality.

Forward response model. The mathematical theory of
operation of this sensor architecture is based on repeated
conditional sampling from Poisson distributions.

An image pixel consists of S jots that are oversampled N
times within one exposure. The image pixel response Y is the
sum of the jot sampling results and, therefore, a number
between 0 and N · S (other models could be used as
well). Jots are grouped by type where jots of a given type
all have the same area and the same threshold. The basic
relations between these variables are S ¼ PnT

i¼1 si, texp ¼P
N
m¼1 tm, and A ¼ PnT

i¼1 siai, where S is the spatial over-
sampling, i.e., the number of jots in an image pixel, nT is
the number of types of jots (different types have different
thresholds or area or both), si is the number of jots of
type i in an image pixel, texp is the exposure time, N is
the temporal oversampling, i.e., the number of readouts dur-
ing exposure time texp, tm is the duration of sampling interval
m (denoted as τ when constant), A is the area of an image
pixel, and ai is the area of jot of type i.

Photons impacting the image sensor are distributed
according to a Poisson distribution. The probability of
observing θ or more photons in a jot given an average inci-
dent photon number λ is therefore

Qðλ; θÞ ≡ Pr½k ≥ θ; λ� ¼ 1 − e−λ
Xθ−1
k¼0

λk

k!
: (1)

Key to the calculation of the expected sensor response is
the probability pi;m that a jot of type i will be at or above
threshold in sampling interval m. This probability can be
computed calculating forward from the first to the last sam-
pling interval.

pi;1 ¼ Qðλi;1; θi;1Þ; (2)

Temporal oversampling

Spatial oversampling

ADC bit depth

Multi exposure HDR

Conventional

Binary oversamplingPlanes of constant total bit depth

Fig. 1 Image sensor design space. Binary oversampling methods lie
on the plane spanned by the temporal and spatial oversampling axes,
while conventional image sensors lie on the analog-to-digital con-
verter (ADC) bit depth axis. Multiexposure high dynamic range lies
on the plane spanned by the temporal oversampling and ADC bit
depth axes. Our theory describes the full three-dimensional design
space.
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pi;2 ¼ ri;1Qðλi;2; θi;2Þ þ
Xθi;2−1
n¼0

λni;1e
−λi;1

n!
Qðλi;2; θi;2 − nÞ

þ
Xθi;1−1
n¼θi;2

λni;1e
−λi;1

n!
; (3)

pi;m≥3 ¼ ri;m−1Qðλi;m; θi;mÞ þ
Xθi;m−1
n¼0

Pði;nÞ
1;m−1Qðλi;m; θi;m − nÞ

þ
Xm−2

j¼1

ri;j
Xθi;m−1
n¼0

Pði;nÞ
jþ1;m−1Qðλi;m; θi;m − nÞ

þ
Xθi;m−1
n¼θi;m

Pði;nÞ
1;m−1 þ

Xm−2

j¼1

ri;j
Xθi;m−1
n¼θi;m

Pði;nÞ
jþ1;m−1: (4)

Here, pi;m is the probability to sample at or above thresh-
old at a jot of type i at sampling interval m, ri;m is the prob-
ability to reset a jot of type i at sampling intervalm, λi;m is the
average number of photons impacting a jot of type i during

sampling interval m, and θi;m is the sampling threshold of jot
of type i in sampling intervalm. The terms in Eqs. (3) and (4)
denote the jots’ sampling and reset history. The first term is
the probability that the jot has been reset in the directly pre-
ceding interval, so that at least the threshold number of pho-
tons are needed to accumulate again to sample at or above
threshold in the following interval. The other terms denote
sequences where no reset has occurred in the directly preced-
ing interval. They are summarized in Table 1. Each term
needs to be multiplied with the probability of its occurrence
and summed over the combinatorial possibilities of photon
combinations to reach it.

The term Pði;nÞ
a;b is the probability of a photon sequence of

total n photons distributed over the sampling intervals a
through b in a way that the threshold is not reached in
any sampling interval a through b and that the sensor is
not reset after sampling. The intervals a and b denote any
pair of sampling intervals with a being less equal to b.
There are different equations to calculate Pði;nÞ

a;b depending
on the sequence of thresholds and the reset operation
(see below).

The expected value of the image pixel response is

E½Y� ¼
XnT
i¼1

�
si
XN
m¼1

pi;m

�
: (5)

Unconditional reset. In the case of unconditional reset
(cf., Refs. 2 to 5), after each sampling ri;m ¼ 1 and
Pði;nÞ
a;b ¼ 0. Equation (5), therefore, becomes

E½Y� ¼
XnT
i¼1

�
si
XN
m¼1

Qðλi;m; θi;mÞ
�
: (6)

Conditional reset with thresholds constant over time. If
the pixels are conditionally reset only if they are sampled at
or above threshold (cf. Fig. 2), then ri;m ¼ pi;m and the full
equations need to be used. As long as the thresholds do not
vary in time, it is, however, possible to find a simplified
expression for Pði;nÞ

a;b as only one threshold needs to be
considered.

The third term of Eq. (3) and the fourth and fifth terms of
Eq. (4) vanish since there is no change in threshold. The
range of the sum over n of the second term of Eq. (3)
and the second and third terms of Eq. (4) from 0 to threshold
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Fig. 2 The dots on the x axis indicate random photon strikes in a jot
and the dot-dash line is their cumulative histogram. The vertical
dashed lines show the sampling intervals of constant period τ. In
this example (θ ¼ 12), the conditional reset occurs three times
—t ¼ 2τ, 4τ, and 7τ, and thus the digital output is y ¼ 3.

Table 1 Sampling sequence types in a jot.

Qðλi;m; θi;mÞ Pixel has been reset at sampling m − 1 and threshold is reached at sampling m.

Pði;nÞ
1;m−1Qðλi;m; θi;m − nÞ Pixel has never been reset before sampling m and threshold is reached at interval m by adding n photons in interval m.

Pði;nÞ
jþ1;m−1Qðλi;m; θi;m − nÞ Pixel has been reset at sampling j < m − 1 and threshold is reached at interval m by adding n photons in interval m.

Pði;nÞ
1;m−1 Pixel has never been reset before sampling m and threshold is reached at interval m without adding photons in

interval m because the threshold of sampling m is n photons lower than the number of photons at the end of
sampling m − 1.

Pði;nÞ
jþ1;m−1 Pixel has been reset at sampling j < m − 1 and threshold is reached at interval m without adding photons in interval

m because the threshold of sampling m is n photons lower than the number of photons at the end of sampling m − 1.
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minus one makes sure that n is never at or above threshold.
The probability of n photons below threshold in the sampling
intervals a to b becomes, therefore, simply the Poissonian
probability of n photons. Since the sum of Poissonian prob-
abilities over expected photon numbers is the Poissonian
probability of the sum over these expected photon numbers,
the sampling sequence probability becomes

Pði;nÞ
a;b ¼ ðPb

k¼a λi;kÞne−
P

b
k¼a

λi;k

n!
: (7)

Conditional reset with temporally variable threshold.
The most complex calculation is for a sensor with thresholds
varying over time where the pixels are conditionally reset
only when they have been sampled above threshold. In
this case, Pði;nÞ

a;b needs to be evaluated by examining the pho-
ton sequences in detail. The set Ξði;nÞ

a;b of photon sequences
fφa · · · φbg is the subset of all possible sequences of
total n photons that do not exceed the threshold at any sam-
pling between intervals a through b. The elements φ of
the sequence are the photon numbers reaching the sensor
at each interval of the sequence. For computational simpli-
fication, all thresholds between sampling event a and b can
be replaced by a monotonic sequence giving the sequence
θ 0
i;a · · · θ 0

i;b with θ 0
i;a ≤ θ 0

i;b. Such a replacement is not nec-
essary to calculate the sampling probabilities, but the time
required to do the computation depends strongly on the num-
ber of photon sequences, and this simplification, therefore,
reduces computation time. The sequence can be made mon-
otonic since if a lower threshold would follow a higher
threshold and the number of photons in that sequence
would be between the high and low threshold, it would
be above the low threshold and the sequence would therefore
not be a sequence that satisfies the condition that the number
of photons is below the threshold for all intervals from a to b.
This allows replacing nonmonotonic θ with monotonic θ 0 by
replacing high thresholds with following low thresholds. The
sequence is then reduced to one entry per threshold value to
the sequence θ�i;a · · · θ�i;b with θ�i;a < θ�i;b, and the sampling
sequence probability becomes

Pði;nÞ
a;b ¼

X
fφa · · ·φb� g∈Ξ�ði;nÞ

a;b�

Yb�
l¼a

λ�φl
i;l e

−λ�i;l

φl!
: (8)

The set Ξ�ði;nÞ
a;b� of photon sequences fφa · · · φb�g is the

subset of all possible photon sequences that fulfill the
conditions

P
b�
l¼a φl ¼ n and

P
k
l¼a φl < θ�i;k ∀ k ∈ ½a; b��.

The list of effective thresholds θ�i;k fulfills the conditions
θ�i;k < θ�i;kþ1 ∀ k ∈ ½a; b� − 1�, θ�i;b� ¼ θi;b, θ�i;k ∈ fθi;rg|fflffl{zfflffl}

a≤r≤b
∀ k ∈ ½a; b��, θi;r ≥ θi;rþ1 ∀ r ∈ ½a; b�, and θ�i;k ¼ θi;b. The
photon count in the modified intervals is determined
as λ�i;l ¼

P
b
r¼a λi;r.

2.1.2 Multibit sampling

Equivalence of multibit and binary sampling. The equiv-
alence between binary oversampling and multibit oversam-
pling can be shown by examining the probabilities of the

ADC to return a specific data number d. If the ADC sampling
a pixel has as output a number between 0 and nT in a sam-
pling interval, then the expected pixel response in that inter-
val is the sum over all possible ADC output values multiplied
with their probability

E½Ym� ¼
XnT
i¼1

i · PrADC½i; λm�: (9)

Here, Ym is the image pixel response at sampling inter-
val m.

If the ADC has a step size of dm in the temporal oversam-
pling interval m, then the probability PrADC½i; λm� to return
data number i in that interval given an average number of
photons λm is the probability to sample i · dm or more pho-
tons minus the probability to sample ðiþ 1Þ · dm or more
photons.

PrADC½i; λm� ¼ Pr½k ≥ i · dm; λm� − Pr½k ≥ ðiþ 1Þ · dm; λm�:
(10)

Assuming nT virtual jots with thresholds at multiples of
the ADC step size dm in sampling interval m, one can set the
threshold θi;m of the i’th virtual jot to

θi;m ¼ i · dm: (11)

It follows then from the definition of pi;m as the proba-
bility to sample at or above threshold at a jot of type i at
sampling interval m together with Eq. (9).

E½Ym� ¼
XnT−1
i¼1

i½pi;mðλm; i · dmÞ − piþ1;mðλm; ðiþ 1Þ · dmÞ�

þ nTpnT;mðλm; nT · dmÞ

¼
XnT−1
i¼1

ipi;mðλm; i · dmÞ −
XnT
i¼2

ði − 1Þpi;mðλm; i · dmÞ

þ nTpnT;mðλm; nT · dmÞ: (12)

Grouping the sums cancels the terms proportional to i and
leaves

E½Ym� ¼
XnT
i¼1

pi;mðλm; i · dmÞ ¼
XnT
i¼1

pi;mðλm; θi;mÞ: (13)

This is the expected value in sampling interval m of a
pixel consisting of nT binary sampled jots having thresholds
according to Eq. (11), each jot receiving the average light
intensity λm corresponding to the light intensity impacting
the multibit sampled pixel. Multibit oversampling is, there-
fore, equivalent to binary oversampling with virtual jots hav-
ing thresholds at the steps of the ADC.

There are, however, important differences between virtual
and real jots that need to be considered. Real jots need to be
placed in different spatial positions, while the virtual jots of
the multibit sampling all occupy the area of the image pixel.
Hence, virtual jots are larger than real jots for any given pixel
size. Because the virtual jot has a larger photoactive area, a
multibit oversampled image sensor will have better low-light
response than a spatially oversampled binary image sensor if
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all other factors such as sensitivity are held constant. Such a
spatially oversampled image sensor can achieve the same
low-light response only if it has jots that are more light-sen-
sitive by a factor that compensates for the jot area reduction.
Also, either all or none of the virtual jots that correspond to a
pixel have to be reset, while a pixel using real jots and condi-
tional reset would reset the jots above the threshold but not
below the threshold. In Eqs. (3) and (4), a common reset
threshold ri;m ¼ θrst;m has to be used when calculating
reset probabilities. To calculate the final pixel response,
ADC results are captured and summed up when the ADC
is above the threshold and at a final residue read at the
end of the exposure. The expected pixel response then
becomes

E½Y� ¼
XnT
i¼1

XN−1

m¼1

pθrst;m

p1;m
pi;m þ

XnT
i¼1

pi;N: (14)

2.1.3 Sampling policies

The analytical model discussed above describes the sensor
response as function of the selected oversampling type
(binary or multibit, spatial, temporal, or both), the sequence
of thresholds, the duration of temporal oversampling inter-
vals, the area of the jots and pixels, and the reset conditions.
We use the term “sampling policy” to describe the set of sam-
pling periods, thresholds, and spatial areas of pixels compris-
ing an image pixel. Different such policies will yield
different response curves and noise characteristics. In an
actual hardware sensor, some of the parameters can be varied
in use while others are fixed at manufacturing. The selection
of the right sampling policy defines the exposure setting of a
sensor according to our proposal, similar to the selection of
exposure time and ISO in a conventional sensor.

The achievable low end of the dynamic range is defined
by the total exposure time, light sensitivity, and the noise
level of the sensor. At very low light levels, no conditional
reset will occur, and the sensor response will be the signal

measured at the end of the exposure time proportional to all
photons that have struck the pixel during that time. In multi-
bit oversampling, a signal different from 0 will be reached if
the ADC output is at least 1 data number. In spatial binary
oversampling, the required condition is that at least one jot
has reached or exceeded the threshold. The high end of the
dynamic range on the other hand is defined by the duration of
the shortest oversampling interval and the respective thresh-
old and ADC step size used when sampling that interval. The
measured signal will be meaningful, i.e., below saturation, if
in the case of multibit oversampling the ADC output is at
least 1 data number below its saturation or full well value
and in the case of binary spatial oversampling if at least
one jot has not reached the threshold.

2.2 Monte Carlo Model and Sensor Noise
2.2.1 Monte Carlo model description

The analytical model described above includes the full effect
of photon shot noise since it is based on the Poisson statistics
of the incident photons. A real image sensor also has intrinsic
temporal and spatial noise sources that influence its
response: read noise from the pixel read-out path, ADC
noise, amplifier noise, and reset noise. Models for all
these additional noise sources can be included in a Monte
Carlo model of the sensor response.

The Monte Carlo model described here follows the
approach of the analytical model by simulating Poisson dis-
tributed photons impacting the sensor, but it has models for
the other noise sources listed in Table 2 added. Figure 3
shows the flow diagram of the Monte Carlo program. In
the case of only temporal oversampling (either binary or
multibit), there is only one real jot per pixel, so the expres-
sion “per real jot” in Fig. 3 can be read as “per pixel.”

2.2.2 Modeled noise sources

An image sensor has a number of noise sources that have to
be included when one wants to accurately simulate its

Table 2 Sensor noise in Monte Carlo program.

Noise Cause Model

Fixed pattern noise Random deviations of circuitry, e.g., threshold voltage
variation. Can be per pixel or per circuit that is shared
by a number of pixels, e.g., an analog-to-digital
converter (ADC).

Number of photo electrons has the same adder each time
it is sampled. The adder is done as random number from a
normal distribution around 0 either per pixel or for a group
of pixels. The fit parameter is the standard deviation.

Temporal threshold
noise

Analog comparison to a threshold, e.g., by using a
sense-amplifier, is subject to noise that can be different
for different time intervals.

The threshold is modified according to a normal distribution
around 0. The fit parameter is the standard deviation.

Pixel response
nonuniformity

Pixel-to-pixel gain variation. Noise is proportional to
light intensity, i.e., number of photo electrons.

The number of photo electrons to be sampled is multiplied
by a random number according to a normal distribution
around 1. The fit parameter is the standard deviation.

Read noise Along the analog read path from pixel to ADC noise
can change the sampled value.

The number of photo electrons is modified according to a
normal distribution around 0. The fit parameter is the
standard deviation.

Reset noise Switching the reset transistor off changes the reset
level (thermal switching noise)

The reset level is modified according to a normal
distribution around 0. The fit parameter is the standard
deviation.
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response. In the Monte Carlo model used in this work, we
model the noise sources described in Table 2.

2.2.3 Linearization of response

Image processing chains of typical imaging systems expect
that the sensor output is a linear function of light intensity
when they perform functions like color demosaicking or
white balance. If the binary above-threshold counts or the
ADC outputs at each above-threshold event are directly
added to each other, then the sum is generally not linear.
Linearization can be achieved by a number of methods.
One method is to precalculate the expected response as a

function of light intensity and then to use a lookup table to
get the light intensity from a measured pixel response.
Another method is to use a weighted sum that linearizes
the response, instead of the simple sum over individual sam-
ples. If each response that is above the threshold and becomes
part of the final response is weighted by the ratio of the time
since the previous reset to the total exposure time, then the
response becomes linear. Only nonsaturated ADC outputs
can be used in this method. If all ADC outputs are saturated,
then the response becomes the total exposure time divided by
the shortest interval duration. Let Ti denote the time since last
reset before Yi, and the linear response becomes

Y linear ¼

8>>>>><
>>>>>:

texp
min

i∈1 · · ·N
ti
Ysat Yi ¼ Ysat ∀ i ∈ 1 · · · N

texpP
i s:t: Ysat>Yi≥θrst

Ti

� P
i s:t: Ysat>Yi≥θrst

Yi

�
∃i s:t: 0 < Yi < Ysat

0 Yi ¼ 0 ∀ i ∈ 1 · · · N

: (15)

Since the maximum possible result of Eq. (15) is larger
than the saturated ADC output by a factor of the ratio of the
total exposure time to the duration of the shortest sampling
interval, while the direct sum has the saturated ADC output
multiplied with the number of sampling intervals as maxi-
mum, the linearized response spans a wider numerical
range than the direct sum if the sampling intervals are not
of the same duration.

2.3 Comparison of Sampling Policies
2.3.1 Spatial, temporal, and multibit oversampling

Figures 4 (unconditional reset) and 5 (conditional reset) com-
pare the different approaches. Lines denote the analytical
model; symbols denote Monte Carlo simulation in the top
graphs. The signal-to-noise ratio (SNR) shown in the bottom
graphs is derived from Monte Carlo simulation. In all cases,
the total bit depth is 8, and the various policies with temporal
oversampling have variable sampling interval duration with
the longest interval 128 times longer than the shortest to
extend the dynamic range without increasing the total bit
depth. The dotted black curve is the response of a conven-
tional sensor with an 8-bit ADC and 20 electrons per data
number saturating at 5100 electrons. The other curves are
oversampling sensors, adding the result of the individual
samplings. Gray curves are binary oversampling sensors
with a threshold of 20 electrons. The dashed gray curve is
of a sensor that oversamples only in time (256 times),
while the solid gray curve oversamples both in space (16
jots) and time (16 times). The black dot-dash curve is a sen-
sor oversampling in time (16 times) with a 4-bit ADC.

All sampling policies shown in Fig. 4 reset the pixel after
each sampling. Without conditional reset, binary temporal
and mixed temporal and spatial oversampling is equivalent
(gray curves in Fig. 4). The bright-light response is extended
for the binary sampling approach compared to that of the
conventional sensor readout. The low-light response of the
binary pixel without conditional reset is much worse than
the conventional (black dotted curve) approach since the
number of photons per jot and sampling interval is lower.

The multibit temporal oversampled pixel (dot-dash black
curve) has improved low-light response since the spatial
oversampling is less.

Figure 5 shows the improved low-light response when
conditional reset is used. The colors and line styles of the
different curves correspond to the same sampling policies
as in Fig. 4. Unlike the case shown in Fig. 4, pixels are
reset only if they are sampled at or above the threshold
(binary oversampled gray curves) or if the data number
returned by the ADC is not zero (multibit oversampled
black dot-dash curve). The only curve that shows reduced
low-light response corresponds to the approach with spatial
oversampling (solid gray curve). The temporally over-
sampled approaches keep the extended bright-light response.
As a result of retaining low-light response and extending the
bright-light response, the sensor dynamic range is extended.
In this example, the dynamic range is extended by a factor of
20 compared to a conventional sensor, corresponding to an
increase of effective full well capacity from 5100 electrons to
over 100,000.

2.3.2 Threshold sequencing

Figure 6 shows a comparison of threshold sequences. The
ascending binary oversampled threshold sequence of
Fig. 6(a) will have a reduced low-light response compared
to the descending sequence of Fig. 6(b) but an increased
high end of the dynamic range. The reason is that the
low-light limit of the dynamic range is reached when no
intermediate conditional reset has occurred and the light col-
lected over the full exposure time is assessed with the last
threshold and readout. Since that last threshold is higher
for an ascending sequence, such a sequence will have a
reduced low-light response. The high end of the range is
determined by a combination of threshold and sampling
interval duration. In Fig. 6(a), the shortest interval has
also the highest threshold and will, therefore, have the high-
est end of the dynamic range. Figure 6(c) shows the virtual
jots when using multibit oversampling. Since the ADC steps
are always present, both low and high thresholds are always
present as well, and thus the wide dynamic range leads to
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both a good low-light response and a high limit in bright
illumination.

2.3.3 Variation of interval duration

Figure 7 compares three different sampling policies. The
response is shown on top and the SNR on the bottom. All
policies use multibit oversampling with a 4-bit ADC and
a full well capacity of 300 electrons. The first two policies
temporally oversample 16 times for a total bit depth of 8 bits.
The first curve [(a), red dashes] varies the sampling interval
duration logarithmically from 1 to 65 relative to each other so
that the shortest interval is 1/261 of the total exposure time.
This number was picked to be as close as possible to the
equidistant ratio of the third curve with logarithmically
spaced integer thresholds. The second curve [(b), solid blue]
has intervals of equal length, each interval being 1∕16 of the
total exposure time. The third curve [(c), black dot-dash)

again uses equidistant temporal oversampling, however,
with 256 samples for a total bit depth of 12 bits. The dynamic
range of the policies with similar length of the shortest inter-
val [(a) and (c)] is nearly the same, while the dynamic range
of the approach with longer intervals (b) is much less. The
SNR curves show that the price of achieving high dynamic
range with fewer samplings is a reduced SNR at the high end.
The response with equal sampling intervals stays close to
linear and the SNR follows the photon shot noise limit,
while the approach with varying interval duration has a
response that shows quasi-logarithmic behavior and the
SNR saturates.

2.4 Hardware Verification
We compared our sensor model to hardware on a small test
chip and presented initial results in Vogelsang et al.12 The
results shown here are from later measurements of the

Fig. 3 Flow diagram of Monte Carlo model.
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same hardware. The pixel is based on a conventional
4T-pixel to which an additional transistor is added to provide
column control in addition to row control for pixel reset. The
test chip was built in a 180 nm CMOS image sensor tech-
nology using a fully pinned photodiode and a pixel pitch of
7.2 μm. The measured conversion gain is 83 μV∕e−. The
read noise was fitted as 10 e− and the photoresponse nonun-
iformity as 1.5%. The pixel was oversampled four times with
a 10-bit ADC, and the ratio of the shortest interval to the total
exposure time was 1∶13.

Figure 8 shows a comparison of the simulated and mea-
sured response, and Fig. 9 shows the same comparison for
the SNR. Linearization was done according to Eq. (15). The
dashed and solid lines denote the simulated curves for con-
ventional and oversampled operations, respectively, while
the asterisks and circles, respectively, denote the correspond-
ing measurement results. The agreement between measure-
ment and simulation is very good. At an SNR of 0 dB, the
dynamic range is 58 dB for the conventional operation and
79 dB for the oversampled operation. At an SNR of 20 dB,
the dynamic range is 35 and 56 dB, respectively. The sam-
pling policy chosen for this example did, therefore, expand
the dynamic range by 21 dB or a factor of 11.

The SNR of the oversampled sensor shows a clearly vis-
ible dip in the extended dynamic range part of the curve.
This dip is caused by not having identical duration of all sub-
frames. In the measurement and simulation shown here, the

first subframe had one quarter of the duration of the
other three subframes. When subframes of similar duration
are combined with oversampling with conditional reset, the
dynamic range is extended with a smooth continuation of the
SNR curve (here from ∼104 photo electrons to ∼3 · 104

photo electrons). The shorter subframe, however, creates an
SNR curve that is shifted according to the duration ratio.
Combining this short subframe with the other three sub-
frames extends the dynamic range further to ∼1.2 · 105

photo electrons, but the SNR is lower when there are so
many photons that the longer subframes saturate. When
designing the sampling policy for the sensor, it is important
to make sure that such a dip does not extend below a desired
SNR in order to not visibly degrade the image. In this exam-
ple, the lowest point of the dip is over 30 dB, which will still
give a very good image quality.

3 Camera Parameters and Sensor Modeling

3.1 Scene Illuminance and Photons Per Pixel
The sensor model described so far relies on the knowledge of
the number of photo electrons per pixel to calculate the sen-
sor response. When one wants to predict the sensor response
when taking images with a camera, the illuminance of the
scene has to be translated into the number of photo electrons
sampled by each pixel.
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Fig. 4 Response (a) and signal-to-noise ratio (b) when using uncondi-
tional reset. All curves have a total bit depth of 8. The binary over-
sampled methods have the worst low-light response, followed by
the temporally oversampled multibit method. None of the over-
sampled methods reaches the low-light response of the conventional
sensor, but all extend the dynamic range at the high end.
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Fig. 5 Response (a) and signal-to-noise ratio (b) when using condi-
tional reset. All curves have a total bit depth of 8. The temporally over-
sampled methods have the same low-light response as the
conventional sensor, but extend the dynamic range at the high
end. Only the spatially oversampled method has less low-light
response.
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3.1.1 Photon energy and illumination

To derive the number of photons impacting a pixel, it is first
necessary to calculate the number of photons impacting a
target area of which a camera is taking a picture of as a func-
tion of the specified illumination of that area.

The CIE spectral power density and luminosity curves13

can be used to calculate the number of photons for a given
illuminant. The luminous flux per Watt for the spectrum of
the illuminant is the product of the luminosity function L and
the spectral power density DP integrated over the visible
spectrum. By integrating the spectral power density of the
illuminant over the wave length, average photon energy
for the illuminant can be derived as well. Together these cal-
culations give the number of photons that impact a given area
atarget during the exposure time at a given illuminance EV as

Λ̃ ¼ γEVtexpatarget: (16)

Here, Λ̃ is the average number of photons incident on an
image pixel during the exposure time texp and γ is the photon
density.

The constant γ that gives the number of photons per lumi-
nous energy and area is dependent on the illuminant. For the
standard daylight spectrum CIE-D65, this constant is
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Fig. 8 Model-to-hardware comparison of the response of an image
sensor operated conventionally, respectively, oversampled with con-
ditional reset. The response of the oversampled sensor was linearized
using the weighted sum of Eq. (15).
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Fig. 6 Sampling policies with different threshold sequences. The
dynamic range of the binary oversampled ascending sequence
(a) will be shifted to higher light intensities compared to the descend-
ing sequence (b) since the bright-light response is determined by the
threshold in the shortest interval, while the low-light response is deter-
mined by the threshold at the end of the exposure time when condi-
tional reset is used. When using multibit oversampling, all thresholds
are present in the virtual jots (c) at all intervals, and the response
spans the widest range.
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Fig. 7 Response (a) and signal-to-noise ratio (b) of policies with con-
stant and variable interval duration. Variable interval duration can
extend the dynamic range to be as large as when using a much higher
total bit depth at the cost of a reduced signal-to-noise ratio at the high
end.
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γD65 ¼ 12612 lx−1 μm−2 s−1: (17)

For a spectrum that is shifted to longer wavelengths, the
number of photons is higher for two reasons: (1) such a
spectrum is not centered on the peak eye sensitivity; there
is, therefore, more power needed for one lumen and
(2) long-wavelength photons are less energetic, and there-
fore, more such photons are needed to provide a given
power. For the standard incandescent spectrum CIE-A, the
constant is

γA ¼ 19892 lx−1 μm−2 s−1: (18)

3.1.2 Lenses and pixel size

The previous section related the illuminance of the target to
the number of photons impacting that target. As a next step,
the fraction of these photons that reach a pixel of the
image sensor needs to be calculated. Assuming Lambertian
reflection of the target and a lens focused at infinity, the illu-
minance of the sensor can be calculated from the illuminance
of the target.

Multiplying with the quantum efficiency as the factor
between the number of photons and the number of converted
photo electrons gives an expression similar to the one derived
in Ref. 14 that allows calculation of the number of photons
sensed by an image pixel as a function of target illuminance,
target reflectivity, the f-number of the lens, the exposure
time, and the pixel area with

Λ ¼ QE · γ
1

4

ρ

F2
Etarget
V texpA: (19)

Here, Λ is the average number of photons sensed in an image
pixel during the exposure time texp, QE is the quantum effi-
ciency, ρ is the reflectivity, and F is the f-number.

3.2 Low-Light and Dynamic Range Capabilities
3.2.1 Influence of pixel size and lens

The simulations whose results are shown in Fig. 10 apply
Eq. (19) to generate the number of photons as input for
the sensor model based on target illumination. Compared
are three different sensing schemes: the first is the conven-
tional single-shot approach, the second is a dual-shot HDR
approach, where the ratio between the short and long expo-
sure is 1∶4, and third is the oversampled approach proposed
in this work. In all oversampled curves, the incident light is
oversampled four times with intervals of relative sampling
durations 1, 2, 4, and 8. At the lowest light intensity, no con-
ditional reset occurs and the response is that of a conven-
tional sensor, while at highest intensity, the pixel is above
the threshold and, therefore, resets every time, and the short-
est sampling interval becomes 1/15 of the exposure time.

The spectrum of the illumination used in the simulation
was D65. If a color filter array were present, one would inte-
grate the spectral density function of the light source with the
photopic response, the quantum efficiency, and the spectral
response of each of the three color filters. To simplify the
task, we used here a combined quantum efficiency of 40%
for the pixel and color filter together with the integral over
spectral density function and photopic response. It was pos-
sible to use this approach as we only want to compare the
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Fig. 10 Signal-to-noise ratio as function of scene illumination:
(a) mobile sensor and (b) DSLR sensor. In both cases, a comparison
at the low-light and at the bright-light end is shown. At the low-light
end, the same total exposure time is used for the conventional and
oversampled operation to match the low-light response, while at
the high end, a longer exposure time is used for the oversampled
operation to extend the dynamic range to the low end while matching
the bright-light response.
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Fig. 9 Model-to-hardware comparison of the signal-to-noise ratio of
the linearized response of an image sensor operated conventionally,
respectively, oversampled with conditional reset. The dynamic range
is extended by 21 dB.
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impact of pixel parameters and optics on the light sensitivity,
not simulate a specific hardware solution. We used a target
reflectivity of 18% for the simulations.

Figure 10(a) shows the simulated SNR of a small-pixel
sensor typical for a mobile system. We assumed a pixel
pitch of 1.1 μm and a fixed f-number of f/2.8. The full well
capacity was assumed to be 5000 electrons and a 10-bit ADC
was used. The exposure time of the conventional sensor (red
curves) in a low-light situation (dashed lines) was assumed to
be 1∕15 s, close to the limit that can be done with a handheld
camera. At the high end (solid lines), 1∕2000 s of exposure
time gives a high end of the dynamic range that is sufficient
to take images in bright sunlit outdoor scenes. The over-
sampled sensor (black curves) uses the same exposure
1∕15 s setting for the low-light situation, but increases the
total exposure time for the bright-light situation to
1∕200 s. The dynamic range is extended by 24 dB in
both situations. At the low-light situation, this extension
occurs at the high-intensity end. At the bright-light situation,
our choice of exposure parameters extends the dynamic
range mostly to the lower end.

Figure 10(b) shows similar results for a digital single lens
reflex camera (DSLR)-type sensor. The assumed pixel pitch
was 6.3 μm, the f-number was variable between f/1.4 and f/
22, the full well capacity was 50,000, and a 14-bit ADC was
used. The extension of the dynamic range is similarly 24 dB
between a conventional and our proposed oversampled sen-
sor since the sampling policy is the same. As in the example
of the mobile sensor, we selected an increased exposure time
for the bright situation to extend the dynamic range to the
lower end.

Figures 10(a) and 10(b) clearly show that the DSLR can
cover a much wider total dynamic range than the mobile sen-
sor. The extension of the dynamic range at the low end comes
mainly from the large pixel area that accepts many more pho-
tons into a pixel according to Eq. (19). The larger aperture
that is possible with DSLR lenses contributes as well. At the
high end, the ability to make the aperture very small together
with a shorter minimum exposure time extends the range.

It is also clear that the multibit oversampling with condi-
tional reset approach provides a small pixel mobile camera
system with very wide dynamic range and wide exposure
latitude. A mobile camera system using this approach can
expose for the low-light regions of the scene while retaining
all of the bright-light information and detail.

Both SNR curves show a nonmonotonic behavior at high
intensities. This is caused by the varying duration of the sam-
pling intervals similar to Fig. 9. Figure 9 had only two differ-
ent durations and, therefore, only one visible dip, while in
Fig. 10, all four durations are different and there are three
visible dips. Both for the mobile sensor and the DSLR, the
dips occur above 30 dB SNR and will, therefore, not be vis-
ible on the final image.

The ability of the dual-shot approach (blue curves) to cap-
ture a wide dynamic range is as expected between the single-
shot approach and our method. The nonmonotonic dip of the
SNR curve in the dual-shot approach is more pronounced
than in our approach since there are only two possible expo-
sure times available, while in our approach, the conditional
reset makes available all combinations of interval durations
between the shortest interval length and the full exposure
time. The dual-shot approach shows a slightly reduced SNR

at the low-light end since we assumed that the sum of the
short and long exposures is the same for all three methods
compared, thereby making the long exposure shorter than
both the total exposure time in our approach and the expo-
sure time of a single shot.

3.2.2 Optimization of low-light response

Figure 11 shows the response and SNR of the small-pixel
sensor of Fig. 10(a) for different full well capacity and
read noise. Since the dynamic range of the oversampled
method is so much higher, the full well capacity can be
reduced, in this example, from 5000 to 1250 electrons to
shift the response curve to lower light intensities while still
increasing the dynamic range at high light intensity. If the
reduced full well capacity can be used to reduce the read
noise as well, e.g., by a higher conversion gain, then the
SNR at low light intensities can be improved compared to
the conventional sensor.

Figure 12 demonstrates this using the example of an
image with 96 dB dynamic range. The top set of images
is false color, comparing the quality of the reconstruction
by showing the relative difference between the reconstructed
linearized response and the original input data. The bottom
set of images shows tone mapped simulation output.
Identical tone mapping has been applied to all simulations.
The small-pixel conventional sensor simulated in Fig. 10 is
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Fig. 11 Comparison of response (a) and signal-to-noise ratio (b) of
conventional and oversampled image sensors. The full well capacity
of the conventional sensor is 5000 electrons. The oversampled sen-
sor has 1250 electrons full well capacity and is oversampled four
times with relative sample interval durations of 1, 2, 4, and 8. If the
reduced full well capacity can be used to reduce the read noise,
then the low-light response can be improved.
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shown with two exposures, one optimized for the darker
parts of the image (a) and one for the brighter parts of the
image (b). The difference between the two exposures is two
stops. The first exposure has overexposed highlights, while
the second has significantly increased noise in the dark
regions. The oversampled image (c) has reduced full well

capacity (from 5000 to 1250 electrons) and sensor read
noise (from 5 to 1 electron). The sequence of relative sam-
pling durations was chosen to be 1, 2, 4, 8, 16, and 32 to
match the large dynamic range of the input image. The
total exposure is the same as for image (a). The oversampled
approach gives even better bright-light reconstruction as the
short exposure with the conventional sensor and excellent
reconstruction of the dark parts of the image as well.

Figure 13 is another example comparing different HDR
approaches. In this case, the four images compare a conven-
tional single-shot exposure, the line-interleaved HDR
approach in which alternating pairs of rows are exposed
with different exposure times, dual-shot HDR blending
two images with different exposure time, and the oversam-
pling approach with conditional reset proposed in this work.
The relative sample interval durations of our approach are
12, 1, 1, 1 in this example. Again, exposure values have been
selected to get the best overall image quality in all cases.
The exposure value of the line-interleaved and dual-shot
HDR are, therefore, one stop higher than single shot, and
the image taken with our approach is exposed three stops
more. The line-interleaved image has a ratio of 2∶1 between
the long and short exposures, while the dual-shot image has a
ratio of 4∶1. A comparison of the images clearly shows the
benefit of our approach. The single-shot image is worst with
saturated highlights and significant noise in the dark. The
line-interleaved approach has better highlights, but the noise
in the dark gets even worse due to the necessary interpola-
tion. Dual shot does not have this problem and has both
better exposed highlights and less noise, but it is still signifi-
cantly noisier than our approach.

4 Conclusions
We have developed a theoretical model that describes light
capture of a photosensor based on photon statistics, thereby
incorporating photon shot noise directly. This model
describes the sampling of photons as a series of binary com-
parisons with a threshold. We showed in previous work that
multibit sampling with an ADC is mathematically equivalent

Fig. 12 False color (top) and tone mapped (bottom) output of an
image simulation comparing conventional and oversampled sensors.
The false color image shows the relative difference between the origi-
nal and reconstructed linear response. The two left images (a) and
(b) are calculated from the simulated response of the small-pixel con-
ventional sensor used in Fig. 10; the right image is calculated from the
simulated response of the oversampled sensor with reduced full well
capacity and read noise. Different from Fig. 1, the sensor has been
oversampled six times with relative sample interval durations of 1, 2,
4, 8, 16, and 32. Images (a) and (c) are exposed at the same exposure
value, while image (b) is exposed at a two stops higher exposure
value. The conventional sensor has either blown out highlights
(a) or increased noise in the dark areas (b), while the oversampled
sensor has high-quality reconstruction over the full dynamic range.

Fig. 13 Full image (top) and zoom into dark part (bottom) of a high dynamic range image. The exposure
has been adjusted to take advantage of wider dynamic range; line interleaved and dual shot are therefore
exposed one stop more than the single-shot image, and the oversampling with conditional reset of this
work is exposed three stops more than the single-shot image.
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to spatially oversampling the pixel with virtual jots that are
sampled with thresholds at the steps of the ADC. Our sensor
model can, therefore, be used to predict and optimize the
light response of any binary oversampling sensor, conven-
tional single-sample multibit sensors, and multibit oversam-
pling sensors. The sensor response can be linearized either
by a lookup table or by a weighted sum of the results of the
individual samplings. We verified this model on hardware
using a small test chip. Using the model, we demonstrated
that sampling policies that use only temporal oversampling
(binary or multibit) and reset the pixel only conditionally
when a threshold has been reached have better low-light
response than sampling policies with unconditional reset
or spatial oversampling. By calculating the number of pho-
tons on the sensor based on target illumination and camera
parameters, we were able to compare exposure settings for
low-light and bright-light settings of conventional sensors
with oversampled sensors both for sensors typical for mobile
devices as for DSLR sensors. A significant increase of
dynamic range of ∼24 dB in our example can be seen in all
cases. In a typical camera application, the dynamic range
would be extended to the high end in a low-light situation
and to the low end in a bright-light situation. The dynamic
range of an oversampled mobile camera can be as large as the
range of a conventional DSLR in medium- or bright-light
situations. Such a matchup is not possible either at very low
light situations where the pixel size is important to collect as
many photons as possible or at very bright light situations
where the aperture needs to be changed to let less light
on the sensor. While the high end can be further extended in
all cases by more oversampling, at the low end, an improve-
ment is only possible when more photons can be collected by
having a larger pixel area, higher pixel sensitivity, or a com-
bination of these approaches. We expect that the pixel can be
designed to achieve higher sensitivity when using our
approach as there is no need to have a large full well capacity
to handle brightly lit parts of the scene. More generally, low-
light response can be improved in camera systems employ-
ing sensors having multibit oversampling with conditional
reset by exposing for the low-light regions of the scene while
retaining all of the bright-light information and detail.
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Stereo vision–based depth of field rendering on
a mobile device

Qiaosong Wang,* Zhan Yu, Christopher Rasmussen, and Jingyi Yu
University of Delaware, Newark, Delaware 19716

Abstract. The depth of field (DoF) effect is a useful tool in photography and cinematography because of its
aesthetic value. However, capturing and displaying dynamic DoF effect were until recently a quality unique
to expensive and bulky movie cameras. A computational approach to generate realistic DoF effects for mobile
devices such as tablets is proposed. We first calibrate the rear-facing stereo cameras and rectify the stereo
image pairs through FCam API, then generate a low-res disparity map using graph cuts stereo matching
and subsequently upsample it via joint bilateral upsampling. Next, we generate a synthetic light field by warping
the raw color image to nearby viewpoints, according to the corresponding values in the upsampled high-res-
olution disparity map. Finally, we render dynamic DoF effect on the tablet screen with light field rendering. The
user can easily capture and generate desired DoF effects with arbitrary aperture sizes or focal depths using the
tablet only, with no additional hardware or software required. The system has been examined in a variety of
environments with satisfactory results, according to the subjective evaluation tests. © 2014 SPIE and IS&T [DOI:
10.1117/1.JEI.23.2.023009]
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1 Introduction
Dynamic depth of field (DoF) effect is a useful tool in pho-
tography and cinematography because of its aesthetic value.
Capturing and displaying dynamic DoF effect were until
recently a quality unique to expensive and bulky movie cam-
eras. Problems such as radial distortion may also arise if the
lens system is not setup properly.

Recent advances in computational photography enable
the user to refocus an image at any desired depth after it has
been taken. The hand-held plenoptic camera1 places a micro-
lens array behind the main lens, so that each microlens image
captures the scene from a slightly different viewpoint. By
fusing these images together, one can generate photographs
focusing at different depths. However, due to the spatial-
angular tradeoff2 of the light field camera, the resolution
of the final rendered image is greatly reduced. To overcome
this problem, Georgiev and Lumsdaine3 introduced the
focused plenoptic camera and significantly increased spatial
resolution near the main lens focal plane. However, angular
resolution is reduced and may introduce aliasing effects to
the rendered image.

Despite recent advances in computational light field im-
aging, the costs of plenoptic cameras are still high due to the
complicated lens structures. Also, this complicated structure
makes it difficult and expensive to integrate light field cam-
eras into small hand-held devices like smartphones or tablets.
Moreover, the huge amount of data generated by the plenop-
tic camera prohibits it from performing light field rendering
on video streams.

To address this problem, we develop a light field render-
ing algorithm on mobile platforms. Because our algorithm
works on regular stereo camera systems, it can be directly

applied to existing consumer products such as three-dimen-
sional (3-D)-enabled mobile phones, tablets, and portable
game consoles. We also consider the current status of mobile
computing devices in our software system design and make
it less platform dependent by using common libraries such as
OpenCV, OpenGL ES, and FCam API. We start by using two
cameras provided by the NVIDIATegra 3 prototype tablet to
capture stereo image pairs. We subsequently recover the
high-resolution disparity maps of the scene through graph
cuts (GCs)4 and then generate a synthesized light field for
dynamic DoF effect rendering. Once the disparity map is
generated, we synthesize a virtual light field by warping
the raw color image to nearby viewpoints. Finally, dynamic
DoF effects are obtained via light field rendering. The overall
pipeline of our system is shown in Fig. 1. We implement our
algorithm on the NVIDIATegra 3 prototype tablet under the
FCam architecture.5 Experiments show that our system can
successfully handle both indoor and outdoor scenes with
various depth ranges.

2 Related Work
Light field imaging opens up many new possibilities for
computational photography, because it captures full four-
dimensional radiance information about the scene. The cap-
tured light information can later be used for applications like
dynamic DoF rendering and 3-D reconstruction. Since con-
ventional imaging systems are only two-dimensional (2-D),
a variety of methods have been developed for capturing and
storing light fields in a 2-D form. Lippmann6 was the first to
propose a prototype camera to capture light fields. The
Stanford multicamera array7 is composed of 128 synchron-
ized CMOS firewire cameras and streams, capturing data to
four PC hosts for processing. Because of the excessive data
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volume, DoF effects are rendered offline. The Massachusetts
Institute of Technology light field camera array8 uses 64 usb
webcams and is capable of performing real-time rendering of
DoF effects. However, these camera systems are bulky and
hard to build. Recently, Ng et al.1 have introduced a new
camera design by placing a microlens array in front of the
sensor with distance equals microlens focal length, wherein
each microlens captures a perspective view in the scene from
a slightly different position. However, the spatial resolution
near the microlens array plane is close to the number of
microlenses. To overcome this limitation, Georgiev and
Lumsdaine3 introduced the focused plenoptic camera
which trades angular resolution for spatial resolution. An
alternative approach is to integrate light-modulating masks
to conventional cameras and multiplex the radiance in the
frequency domain.9 This design enables the camera sensor
to capture both spatial and angular frequency components,
but reduces light efficiency.

As the rapid research and development provide great
opportunities, hand-held plenoptic camera has been proven
practical and quickly progressed into markets. The Lytro
camera10,11 is the first implementation of a consumer-level
plenoptic camera. Recently, Pelican Imaging12 announced
a 16-lens mobile plenoptic camera system and scheduled
to implement it to new smartphones in 2014.

Our work is inspired by the algorithms proposed by Yu
et al.13,14 However, the system proposed in these two papers
is bulky and expensive, and the algorithm is highly depen-
dent on the GPU performance, making it hard to transfer
the proposed method to small hand-held devices such as
cellphones and compact size cameras. The system used by
Yu et al.13 is composed of a desktop workstation and a cus-
tomized stereo camera system. The desktop is equipped with
a 3.2 GHz Intel Core i7 970 6-core CPU and a NVIDIA
Geforce GTX 480 Graphic Card with 1.5 GB memory.
Actually, very few laptops on the market can reach the
same level of performance, let alone tablets or cellphones.
Also, this system connects to two Point Grey Flea 2 cameras
via a Firewire link. The retail price for two Flea cameras is
around $1500, and the camera itself requires external power
source and professional software for functionalities such as
auto exposure, white balancing, and stereo synchronization,
which is almost impractical for general users without a com-
puter vision background. In addition, most scenes in this
article are indoor scenes with controlled lighting, and the

user is required to tune different parameters on a GUI in
order to obtain a good-looking disparity map in different
scenes. In contrast, our software system works directly on
an off-the-shelf tablet, which costs less than $400. Since
our algorithm is implemented under the Android operating
system using highly optimized CPU-only functions from
OpenCV4Android SDK, it can be easily ported to other
hand-held Android devices with limited computational
power. Besides, we conducted extensive experiments to
obtain parameters that generate optimal results. Therefore, it
is easy to install and use our software, no hardware setup or
parameter adjustment is required. Furthermore, our system
uses GCs15 instead of belief propagation (BP)16 for stereo
matching and is tested working under complex illumination
conditions. According to the tests carried out by Tappen and
Freeman,17 GCs generate smoother solutions compared with
BP and consistently perform better than BP in all quality
metrics for the Middlebury18 Tsukuba benchmark image
pair. To conclude, we made the following contributions:

• We propose light field rendering as a possible solution
to generate dynamic DoF effects. We also discussed
why our method is good at reducing boundary discon-
tinuity and intensity leakage artifacts compared with
depth-based image blurring schemes.

• We implemented the entire system on an off-the-shelf
Android tablet using highly optimized CPU-only func-
tions from OpenCV4Android SDK. The system can be
easily ported to other mobile photography devices with
limited computational power.

• We conducted extensive experiments to obtain the opti-
mal combination of methods and parameters under
the Tegra 3 T30 prototype device. As a result, there is
no need for parameter adjustment and it is easy for the
user to install and use our application.

• We experimented with GCs for disparity map calcula-
tion, and the system is capable of working with a vari-
ety of scene structures and illumination conditions.

3 Overview
In this article, we demonstrate that the DoF effects can be
rendered using low-cost stereo vision sensors on mobile
devices. We first capture stereo image pairs by using

Fig. 1 The NVIDIA Tegra 3 prototype tablet and the processing pipeline of our software system. All
modules are implemented on the Android 4.1 operating system.
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the FCam API and then apply the GCs stereo-matching
algorithm to obtain low-resolution disparity maps. Next,
we take raw color images as guide images and upsample
the low-resolution disparity maps via joint bilateral upsam-
pling. Once the high-resolution disparity maps are generated,
we can synthesize light fields by warping the raw color
images from the original viewing position to nearby view-
points. We then render dynamic DoF effects by using the
synthetic light fields and visualize the results on the tablet
screen. We evaluate a variety of real-time stereo-matching
and edge-preserving upsampling algorithms for the tablet
platform. Experimental results show that our approach pro-
vides a good tradeoff between expected depth-recovering
quality and running time. All aforementioned processing
algorithms are implemented to the Android operating system
and tested on the Tegra 3 T30 prototype tablet. The user can
easily install the software and capture and generate desired
DoF effects using the tablet only, with no additional hard-
ware or software required. The system has been tested in
a variety of environments with satisfactory results.

4 Programmable Stereo Camera

4.1 Development Environment
The Tegra 3 T30 prototype tablet is equipped with a 1.5 GHz
quad-core ARM Cortex-A9 CPU and a 520 MHz GPU. It
has three sensors. The rear main sensor and secondary sensor
are identical with a 6-cm baseline. The third sensor is on the
same side of the multitouch screen facing the user. The raw
image resolution is 640 × 360 (16:9).

Our software is running under Android 4.1 (Jelly Bean)
operating system. We use the Tegra Android Developer Pack
(TADP) for building and debugging the application. This
software toolkit integrates Android SDK features to Eclipse
IDE by using the Android Development Tools (ADT) Plugin.
The ADT extends the capabilities of Eclipse and enables the
user to design graphic UI, debug the application using SDK
tools, and deploy APK files to physical or virtual devices.
Since typical Android applications are written in Java and
compiled for the Dalvik Virtual Machine, there is another
toolset called Android Native Development Kit (NDT) for
the user to implement part of the application in native code
languages such as C and C++. However, using the NDT
brings certain drawbacks. First, the developer has to use the
NDT to compile native code, which hardly integrates with
the Java code, so the complexity of the application is
increased. Besides, using native code on Android system
generally does not result in a noticeable improvement in per-
formance. For our application, since we need to use the
FCam API for capturing stereo pairs and OpenCV and
OpenGL ES for image processing and visualization, we
implemented most of the code in C++ and run the code
inside the Android application by using the Java Native
Interface (JNI). The JNI is a vendor–neutral interface that
permits the Java code to interact with the underlying native
code or load dynamic-shared libraries. By using the TADP,
our workflow is greatly simplified. We first send commands
to the camera using the FCam API, then convert raw stereo
image pairs to cv::Mat format, and use OpenCV for rectifi-
cation, stereo matching, joint bilateral upsampling, and DoF
rendering. The final results are visualized on the screen using
OpenGL ES.

4.2 FCam API
Many computational photography applications follow the
general pattern of capturing multiple images with changing
parameters and combining them into a new picture. How-
ever, implementing these algorithms on a consumer-level
tablet has been hampered by a number of factors. One
fundamental impediment is the lack of open software
architecture for controlling the camera parameters. The
Frankencamera5 proposed by Adams et al. is the first archi-
tecture to address this problem. Two implementations of this
concept are a custom-built F2 camera and a Nokia N900
smartphone running on a modified software stack to include
the FCam API. Troccoli et al. extended the implementation
of FCam API to support multiple cameras19 and enabled the
NVIDIA Tegra 3 prototype tablet to trigger stereo captures.

4.3 Calibration, Synchronization, and Autofocus
Since the two sensors are not perfectly aligned, we calibrated
the stereo pair using a planar checker board pattern outlined
by Zhang.20 We computed the calibration parameters and
saved them to the tablet hard drive as a configuration file.
Once the user starts the application, it automatically loads
the calibration parameters to memory for real-time rectifica-
tion. This reduces distortion caused by the optical lens and
improves stereo-matching results. Even though we obtained
rectified image pairs, we still need to synchronize the sensors
since we cannot rectify over time for dynamic scenes. The
main mechanism for synchronizing multiple sensors in FCam
API is by extending the basic sensor component to a sensor
array.19 A new abstract class called SynchronizationObject is
also derived from the Device class with members release and
wait for software synchronization. When the request queue
for the camera sensors is being processed, if a wait is found
and a certain condition is not satisfied, the sensor will halt
until this condition is satisfied. On the other hand, if a release
is found and the condition is satisfied, the halted sensor will
be allowed to proceed. The FCam API also provides classes
such as Fence, MultiSensor, MultiShot, MultiImage, and
MultiFrame for the user to control the stereo sensor with
desired request parameters.

In our application, we use the rear main camera to con-
tinuously detect the best focusing position and to send
updates to the other sensor. First, we ask the rear main lens
to start sweeping the lens. We then get each frame with its
focusing location. Next, we sum up all the values of the
sharpness map attached to the frame and send updates to
the autofocus function. The autofocus routine will move
the lens in a relatively slower speed to refine the best
focal depth. Once this process is done, we trigger a stereo
capture with identical aperture, exposure, and gain parame-
ters for both sensors. The overall image quality is satisfac-
tory, considering the fact that the size of the sensor is very
small and the cost is much lower than research stereo camera
systems such as Pointgreys Bumblebee. Figure 2 shows how
our software system interacts with the imaging hardware.

5 Disparity Map Generation
Computing depth information from stereo camera systems is
one of the core problems in computer vision. Stereo algo-
rithms based on local correspondences21,22 are usually
fast but introduces inaccurate boundaries or even bleeding
artifacts. Global stereo estimation methods, such as GCs15
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and BP,16 have shown good results on complex scenes with
occlusions, textureless regions, and large depth changes.18

However, running these algorithms on full-resolution (1
MP) image pairs is still expensive and hence impractical for
mobile devices. Therefore, we first downsample the raw
input image pair and recover a low-resolution disparity map
via GCs. Next, we take each raw color image as the guidance
image and upsample the disparity map via joint bilateral
upsampling.23

5.1 GCs Stereo Matching
In order to efficiently generate a high-resolution disparity
map with detailed information about the scene, we propose
a two-step approach. We first recover a low-resolution dis-
parity map on downsampled image pairs with the size of
160 × 90. Given the low-resolution image pairs, the goal is
to find labeling of pixels indicating their disparities. Suppose
fðpÞ is the label of pixel p;DpðxÞ is the data term, reflecting
how well pixel p fits its counterpart pixel p shifted by x in
the other image; Vp;qðy; zÞ is the smoothness term indicating
the penalty of assigning disparity y to pixel p and disparity z
to pixel q; and N is the set of neighboring pixels, the cor-
respondence problem can be formulated as minimizing the
following energy function:

EðfÞ ¼ arg min
f

�X
p∈P

Dp½fðpÞ� þ
X

fp;qg∈N
Vp;q½fðpÞ; fðqÞ�

�
:

(1)

The local minimization of Eq. (1) can be efficiently
approximated using the alpha expansion presented in
Ref. 15. In our implementation, we set the number of dispar-
ities to be 16 and run the algorithm for five iterations. If the
algorithm cannot find a valid alpha expansion that decreases
the overall energy function value, then it may also terminate
in less than five iterations. The performance of GCs on the
Tegra 3 tablet platform can be found in Table 1.

To evaluate our scheme, we performed experiments on
various stereo image datasets. The stereo-matching methods

used here are block matching (BM), semi-global BM
(SGBM),21 efficient large-scale stereo (ELAS),22 and GCs.15

Table 1 shows the running time of these algorithms on the
Tegra 3 tablet, and Fig. 3 shows the calculated disparity map
results. According to our experiments, BM is faster than
SGBM and ELAS on any given dataset but requires an
adequate choice of the window size. Smaller window
sizes may lead to a larger bad pixel percentage, whereas
larger window sizes may cause inaccuracy problems on the
boundary. Besides, the overall accuracy of disparity values
generated by BM is not very high. As can be seen from
Fig. 3, we can still identify the curved surface area of the
cones from the results generated by SGBM and ELAS, but
the same area looks almost flat in BM. SGBM and ELAS are
the two very popular stereo-matching algorithms with near
real-time performance. According to our experiments on the
tablet, they are very similar to each other in terms of running
time and accuracy. From Table 1 and Fig. 3, we can see that
ELAS generates better boundaries than SGBM on the cones
dataset, but takes more processing time and produces more
border bleeding artifacts. The GCs gives smooth transitions
between regions of different disparity values. According to
Table 2, the GCs algorithm outperforms other algorithms in
most of the quality metrics on the Middlebury datasets. For
our application, since the quality of upsampled result is
highly dependent on the precision of boundary values in
low-resolution disparity maps, we choose to use GCs rather

Fig. 2 This diagram shows our system architecture. Our application accepts user input from the multi-
touch screen, sends multishot requests to the sensors with desired parameters, and then transfers the
raw stereo image pairs to the stereo-matching module. We then upsample the low-resolution disparity
map and synthesize a light field image array. Finally, we render DoF effects on the screen of the tablet.
We compute the best focal plane by using image statistics information tagged with the raw image frame.

Table 1 Comparing running time (ms) of different stereo-matching
methods on the Tegra 3 tablet, using the Middlebury Cones dataset.
The longer edge is set to 160 pixels, and the number of disparities is
set to 16.

Datasets BM SGBM ELAS GCs

Tsukuba 15 28 51 189

Venus 13 30 97 234

Cones 19 42 124 321
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than other methods which runs faster. Another reason is that
we are running the GCs algorithm on low-resolution
imagery. According to Table 1, the running time is around
250 ms, which is still acceptable compared with ELAS
(around 100 ms). In return, noisy and invalid object boun-
daries are well optimized and the resulting disparity map is
ideal for refinement filters such as joint bilateral upsampling.

5.2 Joint Bilateral Upsampling
Because the stereo-matching process is performed on low-
resolution stereo image pairs, the resulting disparity map can-
not be directly used for DoF synthesis. We need to upsample
the disparity map while keeping important edge information.

Bilateral filtering proposed by Tomasi and Manduchi24 is
a simple, noniterative scheme for edge preserving smooth-
ing, which uses both a spatial kernel and a range kernel.
However, for low signal-to-noise ratio images, this algorithm
cannot keep the edge information very well. A variant called
joint bilateral filter introduced by Kopf et al.23 addresses this

problem by adding the original RGB image as a guidance
image. More formally, let p and q be two pixels on the
full-resolution color image I; p↓ and q↓ denote the corre-
sponding coordinates in the low-resolution disparity map
D 0; f is the spatial filter kernel, g is the range filter kernel,
W is the spatial support of kernel f, and Kp is the normal-
izing factor. The upsampled solution Dp can be obtained as

Dp ¼ 1

Kp

X
q↓∈W

D 0
q↓fðkp↓ − q↓kÞgðkIp − IqkÞ: (2)

This method uses RGB values from the color image to
create the range filter kernel and combines high-frequency
components from the color image and low-frequency com-
ponents from the disparity map. As a result, color edges are
integrated with depth edges in the final upsampled disparity
map. Since depth discontinuities typically correspond with
color edges, this method can remove small noises. How-
ever, it may bring some unwanted effects. First, blurring

Fig. 3 Comparison of our approach and other popular stereo-matching algorithms.

Table 2 Evaluation of different stereo-matching methods on the Middlebury stereo datasets cite in bad pixel percentage (%). The method shown in
the last row applies five iterations of joint bilateral upsampling to the downsampled results (half of the original size) of GCs, using the full-resolution
color image as the guidance image. The resolutions of the four datasets (Tsukuba, Venus, Teddy, and Cones) are 384 × 288, 434 × 383,
450 × 375, and 450 × 375, respectively. If not specified, raw image size of each individual dataset will be the same for the remainder of this article.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

BM 10.3 11.9 21.5 12.4 13.9 21.6 16.7 23.1 27.3 7.46 17.2 23.8

SGBM 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90

ELAS 3.96 5.42 17.9 1.82 2.78 20.9 7.92 14.5 22.8 6.81 14.9 17.2

GCs 1.94 4.12 9.39 1.79 3.44 8.75 16.5 25.0 24.9 7.70 18.2 15.3

Proposed 1.01 2.83 5.42 0.18 0.59 1.99 6.57 11.2 15.1 3.06 9.70 8.92

Note: nonocc, bad pixel percentage in nonoccluded regions; all, bad pixel percentage in all regions; disc, bad pixel percentage in regions near-
depth discontinuities.
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and aliasing effects caused by the optical lens are transferred
to the disparity map. Besides, the filtering process may
change disparity values in occlusion boundaries, according
to the high-frequency components in the color image, and
thus causing the disparity map to be inaccurate. We address
this problem by iteratively refining the disparity map after the
upsampling process is done. As a result, the output image of
the previous stage becomes the input of the next stage.

Figure 4 shows the results after different numbers of iter-
ations. The initial disparity map [see Fig. 4(a)] is noisy and
inaccurate, because it is generated on low-resolution image
pairs. However, if too many iterations are applied to the input
image [Fig. 4(d)], the boundaries of the cup handle start to
bleed into the background, which is a result of over-smooth-
ing. Also, more iterations add to the complexity and process-
ing overhead of the entire application. According to Fig. 5,
the quality of the disparity map can be improved during the
first five or six iterations. This is because joint bilateral
upsampling can preserve edges while removing noises in
the disparity map. However, if the refining process contains
too many iterations, then the disparities of one side of edges
start to bleed into the other side, causing the bad pixel per-
centage to go up, especially in regions near depth disconti-
nuities (refer to the increase of disc values in Fig. 5).
Therefore, a compromise number of iterations must be
chosen. In our application, the number is set to 5. Since
the Middlebury datasets contain both simple scenes like
Venus and complex scenes such as Teddy and Cones, we
assume that five iterations should return good results under
a variety of scene structures. Generally, it takes around 40 ms
to finish the five iteration steps on the tablet. Figure 6 illus-
trates the detailed view of our result compared with other
standard upsampling methods. Because DoF effects are
most apparent around the depth edges, it is very important
to recover detailed boundaries in the high-resolution dispar-
ity map. According to Table 3, our method outperforms other
methods in all quality metrics and generates better boundary
regions (refer to disc values in Table 3) by using the fine
details from the high-resolution color image.

6 DoF Rendering
Once we obtained the high-resolution disparity map, we can
proceed to synthesize dynamic DoF effects. Previous studies
suggested that the real-time DoF effects can be obtained by
applying a spatially varying blur on the color image and
using the disparity value to determine the size of the blur
kernel.25,26 However, this method suffers from strong inten-
sity leakage and boundary bleeding artifacts. Other methods

such as distributed ray tracing27 and accumulation buffer28

give more accurate results. However, these methods are com-
putationally expensive and therefore can only provide a lim-
ited frame rate.

6.1 Synthesized Light Field Generation
In this article, we use a similar approach to Ref. 29 by gen-
erating a synthetic light field on the fly. The main idea is to
get the light field image array by warping the raw color
image to nearby viewpoints, according to the corresponding
values in the upsampled high-resolution disparity map. The
light field array can then be used to represent rays in the
scene. Each ray in the light field can be indexed by an integer
4-tuple (s; t; u; υ), where (s; t) is the image index and (u; υ) is
the pixel index within an image. Next, we set the rear main
camera as the reference camera and use the high-resolution
color image and disparity map for reference view R00. We
then compute all rays passing through a spatial point X with
shifted disparity γ from the reference view. Suppose X is pro-
jected to pixel (u0; υ0) in the reference camera, we can com-
pute its image pixel coordinate in any other light field camera
view Rst as

ðu; υÞ ¼ ðu0; υ0Þ þ ðs; tÞ · γ: (3)

However, this algorithm may introduce holes in warped
views, and this artifact becomes more severe when the syn-
thesized baseline increases. To resolve this issue, we start
from the boundary of the holes and iteratively take nearby
pixels to fill the holes. Note that this module is only used
for generating pleasing individual views for the user to inter-
actively shift the perspective. In the final rendering process,
missing rays are simply discarded and the filled pixels are
not used. Figure 7 shows the warped views of an indoor
scene using the aforementioned warping and hole-filling
algorithms.

Since the image formed by a thin lens is proportional to
the irradiance at pixel a,30 if we use Loutðs; t; u; υÞ to re-
present the out-of-lens light field and Linðs; t; u; υÞ to re-
present the in-lens light field, the pixels in this image can
be obtained as a weighted integral of all incoming radiances
through the lens

aðx; yÞ ≃
X
ðs;tÞ

Linðs; t; u; υÞ · cos4ϕ: (4)

To compute the out-of-lens light field, we simply remap
the pixel aðx; yÞ to pixel ðu0; υ0Þ ¼ ðw − x; h − yÞ in the
reference view R00. Therefore, we can focus at any scene

Fig. 4 Comparison of results using different numbers of iterations. Panels (a), (b), (c), (d) are obtained
using 0, 5, 10, 20 iterations, respectively.
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depth with corresponding disparity γf by finding the pixel
index in camera Rst using Eq. (3). Since the direction for
each ray is (s; t; 1), we can approximate the attenuation
term cos4 ϕ as 1

ðs2þt2þ1Þ2, and the irradiance at a can be cal-
culated as

aðx; yÞ ≃
X
ðs;tÞ

Loutðs; t; u0 þ s · γf; υ0 þ t · γfÞ
ðs2 þ t2 þ 1Þ2 : (5)

Figure 8 shows the details of the rendered image by using
different sizes of the synthesized light field array. Since ali-
asing artifacts are related to scene depth and sampling

frequency,31 we can reduce aliasing in the rendered image
by increasing the size of the synthesized light field array.

6.2 Comparison of Our Method and Single-Image
Blurring

Reducing boundary artifacts is very important as DoF effects
are apparent near the occlusion boundaries. Comparing with
single-image blurring methods,25,26 our light field–based
analysis is good at reducing two types of boundary artifacts:
the boundary discontinuity and intensity leakage artifacts.
We summarize four types of boundary artifacts and analyze
them separately. A detailed illustration of the four cases can

Fig. 5 Evaluation of the disparity maps using different numbers of joint bilateral upsampling iterations on
the Middlebury stereo dataset. The horizontal axis shows the number of iterations and the vertical axis
shows the bad pixel percentage.

Fig. 6 Comparison of our approach and other upsampling algorithms on the Middlebury cones dataset.
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Rendered image

Using 15>< 15 synthesized light field array

11
Using 31x31 synthesized light field array

(a) (b)

be found at Fig. 9. In practice, the four cases can occur at the
same time within a single scene.

Our analysis is based on the real-world scene shown in
Fig. 9. Consider a woman in a black dress walking in
front of a white building. When we conduct the DoF analy-
sis, the camera is either focused at the foreground (the
woman) or at the background (the building). For Figs. 9(a)

and 9(b), we assume that the camera to be focused at the
background, and for Figs. 9(c) and 9(d), we assume that
the camera is focused at the foreground. For each case, a
comparison of results using different methods is shown at
the right side of the images.

Now consider the first two cases shown in Figs. 9(a) and
9(b). Suppose Pb is a point on the background building and

Table 3 Evaluation of various upsampling methods on the Middlebury stereo datasets in bad pixel percentage (%). We run these methods on
downsampled ground truth data (half of the original size), and then try to recover the disparity maps at original size and measure the error
percentage.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Nearest neighbor 5.55 6.65 18.3 0.47 1.02 6.56 8.65 9.77 28.2 7.98 9.62 23.7

Bicubic 4.97 5.69 18.7 0.67 0.93 9.32 4.89 5.61 17.8 6.81 7.59 20.6

Bilateral 4.59 5.04 10.8 0.41 0.60 5.75 4.52 5.12 16.3 6.85 8.41 20.5

Proposed 3.08 3.34 7.54 0.25 0.33 3.47 2.41 2.89 8.76 3.45 3.96 10.5

Note: nonocc, bad pixel percentage in nonoccluded regions; all, bad pixel percentage in all regions; disc, bad pixel percentage in regions near-
depth discontinuities.

Fig. 7 Synthesized light field view, missing pixels are marked in red. (a) Input image, (b) warped left side
view, (c) warped right side view, and (d) resulting image using our hole-filling algorithm, taking (c) as the
input.

Fig. 8 Comparing rendering results with different sizes of the synthesized light field array.
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its image Ib in the camera is right next to the foreground as
shown in Fig. 9(a). The ground truth result should blend both
foreground and background points for calculating Ib to make
the transition natural and smooth. However, single-image
blurring methods would consider Pb in focus and directly
use its color as the value of Ib. This will result in a boundary
discontinuity artifact because of the abrupt jump between
foreground and background pixel values. Our method, how-
ever, takes advantage of the synthesized light field, attempts
to use rays originating from both foreground and background
to calculate the pixel value of Ib, and hence generates correct
results for this scenario. Similarly, for a foreground point Pf
shown in Fig. 9(b), the ground truth result should blend its
neighboring foreground pixels and a single in-focus back-
ground point. The single-image blurring methods will use
a large kernel to blend a group of foreground and background
pixels, producing the intensity leakage artifact. In contrast,

our method only takes rays needed to get the value of Pf
and is free of intensity leakage artifacts. However, due to
occlusion, some background pixels may be missing. In
this case, our method will blend foreground rays and acces-
sible background rays together. Since the missing rays only
occupy a small portion of all background rays, our method
produces reasonable approximations.

For the other two cases [Figs. 9(c) and 9(d)], assume
that the camera is focused at the foreground. As shown in
Fig. 9(c), the ground truth result should only blend back-
ground pixels. However, because of the blur kernel, the sin-
gle-image blurring method blends both foreground and
background pixels and thus causing intensity leakage prob-
lems. Our method, on the other hand, only attempts to blend
background rays. Similar to the previous case, some rays are
occluded by the foreground. We simply discard these rays
and by blending existing rays together, we are able to reach

Fig. 9 Causes of different boundary artifacts (see Sec. 6.2 for details). In (a) and (b) the camera is
focused at the background. In (c) and (d), the camera is focused at the foreground.

Fig. 10 Comparison between our method and single-image blurring. Single-image blurring methods
suffer from intensity leakage (a) and boundary discontinuity (b) artifacts. Our method (c and d) reduces
these artifacts.
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Scene 1

Scene 2

reasonable approximations of the ground truth. For the last
case, consider a point Pf on the foreground, as shown in
Fig. 9(d). Since this pixel is considered to be in focus, the
single-image blurring method will directly use its color
and produces the correct result. Our method collects all
rays coming from Pf, and these rays are all accessible.
Therefore, our method is also able to get the correct result.

Figure 10 shows the results of our method and single-
image blurring on an outdoor scene. As mentioned before,
our method reduces artifacts on boundary regions compared
with single-image blurring approaches. In fact, our method
will not cause any intensity leakage problems. When exam-
ining the single-image blurring result [Fig. 10(a)], it is very
easy to find intensity leakage artifacts along the boundary,
whereas our technique prevents such leakage [Fig. 10(c)].
Also, our method provides smooth transitions from the hand-
bag strips to the background [Fig. 10(d)], whereas single-
image blurring method exhibits multiple discontinuous
jumps in intensity values.

7 Results and Analysis
We conducted extensive experiments on both indoor and out-
door scenes. Figures 11 and 12 show the results generated by

our system under different scene structures and illumination
conditions. Scenes 1 and 2 demonstrate our system’s ability
of handling real-time dynamic scenes; Scene 3 shows the
result on an outdoor scene with strong illumination and shad-
ows; Scene 4 displays the result on an indoor scene with
transparent and textureless regions.

The processing speed of different frames varies from less
than a second to several hundred seconds depending on the
parameters such as number of stereo-matching iterations,
number of bilateral upsampling iterations, and the size of
the synthesized light field array. The user can keep taking
pictures while the processing takes place in the background.
Considering the performance of current mobile device pro-
cessors, rendering real-time DoF effects on HD video
streams is still not practical. However, this does not prevent
users from taking consecutive video frames and rendering
them offline, as can be seen in scenes 1 and 2 of Fig. 11.
Also, since in general the stereo cameras on mobile devices
have a small baseline, the disparity values of pixels in the
downsampled images have certain max/min thresholds. We
can reduce the number of disparity labels in the GCs algo-
rithm and further improve the processing speed without
introducing much performance penalty.

Fig. 11 Input disparity map and rendered images of our system on two frames from the same stereo
video sequence.
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Scene 3

Scene 4

We first demonstrate our system in dynamic outdoor
scenes. Figure 11 shows the results of two frames from
the same video sequence. Since we currently do not have
any auto-exposure or high-dynamic range (HDR) modules
implemented, some parts of the photo are over-exposed. As
shown in the photograph, many texture details are lost in the
over-exposed regions, making it challenging for the stereo-
matching algorithm to recover accurate disparity values.
Moreover, the background lawn contains noticeable shadows
and large portions of the building wall are textureless. This
adds to the difficulty of finding pixel to pixel correspond-
ences. Notwithstanding, our algorithm generates visually
good-looking disparity maps. The edges of the woman’s
hand and arm are preserved when they are in focus, and
objects outside of the focal plane are blurred smoothly.

Scene 3 of Fig. 12 displays a scene of two women walk-
ing in front of a parking lot. Typically the working range of
the tablet sensor is from half a meter to 5 m. As a result, the
cars in the parking lot are already approaching the maximum
working distance of the sensor. This, however, does not
affect the overall refocusing result as the cars with similar
disparity values are either all in focus [Fig. 12, row 2, column
2] or blurred [Fig. 12, row 2, column 1]. The sidewalk in

front of the parking lot has a lot of textureless areas, making
it difficult to achieve coherent disparity values. As a result,
the left and right parts of the sidewalk are blurred slightly
differently although they are on the same plane [Fig. 12,
row 2, column 2]. Also, because the women in scene 3 are
farther away from the camera compared with the women in
scenes 1 and 2, the boundaries of women in scene 3 are
coarser and fine details on the bodies are lost. Therefore,
foregrounds in scene 3 are more uniformly blurred compared
with scenes 1 and 2.

Indoor scenes have controllable environments and un-
doubtedly aid the performance of our system. For example,
most structures from an indoor scene are within the working
range of our system and typically indoor lighting would not
cause problems such as over-exposure or shadows. Scene 4

Fig. 12 Input disparity map and rendered images of our system on two real scenes with the same
arrangement as in Fig. 11.

Table 4 Results of subjective quality rating tests.

User ♯ 1 2 3 4 5 6 7 8 9 10 Average

Nonexperts 7 9 9 8 9 8 7 7 9 8 8.1

Experts 5 3 7 6 8 7 1 5 5 6 5.3
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of Fig. 12 shows the results on an indoor scene with
transparent objects and textureless regions. Since our algo-
rithm effectively fills holes and corrects bad pixels on the
disparity map by using the guide color image, the resulting
disparity map looks clean and disparity edges of the chan-
delier are well preserved [Fig. 12, row 3, column 2]. The
upper left part of the wall surface is over-exposed and the

light bulb in the foreground almost merged into the back-
ground. However, the disparity map still recovers edges
correctly. As can be seen in Fig. 12, row 4, column 2, the
defocus blur fades correctly from the out-of-focus light
bulb regions into the in-focus wall regions, despite the
fact that they are both white and do not have clear boundaries
in between.

Fig. 13 Our result on a skateboard scene at 6 MP captured by Fujifilm FinePix Real 3-D camera (cour-
tesy of Design-Design).32

Fig. 14 Our result on a sculpture scene at 6 MP captured by Fujifilm FinePix Real 3-D camera (courtesy
of Design-Design).32
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The discussion here is based on our own captured data,
and it is hard to evaluate rendered results because of the lack
of ground truth. To address this problem, we conducted sub-
jective rating tests with 20 people. Among these people, 10
have a computer vision or graphics background and the
remaining have no expertize in the related field. For conven-
ience and clarity, the rating is done on a 0 to 9 scale for meas-
uring the quality of rendered results. We define the rating as
follows: 0 (not acceptable), 1 (acceptable), 3 (good, but
needs improvement), 5 (satisfactory), 7 (very good), and 9
(excellent). The test results can be found in Table 4. The
average rating of the nonexpert group is 8.1, and the average
rating from the experts is 5.3. Therefore, the overall quality
of the rendered results can be concluded as satisfactory.

According to Table 2, our method returns the best dispar-
ity map results in terms of overall bad pixels percentage.
Also, our system correctly handles complex scene structures
with real-world illumination conditions. Last but not least,
according to the resulting images in Fig. 8, we reduce alias-
ing artifacts in out-of-focus regions by blending multiple
synthesized light field views together.

Finally, to demonstrate that our algorithm is also capable
of generating high-quality DoF effects using high-resolution
stereo input, we leverage mobile devices Fujifilm FinePix
Real 3-D camera to capture a set of stereo images and to
generate the shallow DoF images with refocus capabilities
at 6-MP resolution, as shown in Figs. 13 and 14. Current
light field cameras are not capable of generating such high-
resolution images. Figure 13 shows the scene of a person
playing with a skateboard. Our algorithm is able to preserve
most of the depth discontinuities in the scene such as the
edges of the hand, the skateboard, and the leg. Note that
the background between the legs is marked as the fore-
ground, leaving artifacts in the final rendering. This is due
to the unsuccessful depth estimation of the GCs algorithm,
and our current depth upsampling is largely relying on the
initial estimation. In the future, we plan to employ the depth
error correction into our upsampling scheme. Figure 14
shows a scene of a sculpture in a shopping mall. Despite the
complex occlusion conditions in the scene, our algorithm is
still able to synthesize shallow DoF effects with little artifacts
such as fussy edges on the stairs.

8 Conclusion
We have presented an affordable solution for producing
dynamic DoF effects on mobile devices. The whole system
runs on an off-the-shelf tablet, which costs less than $400.
We compare the performance of popular stereo-matching
algorithms and design a hybrid resolution approach,
which tries to improve both speed and accuracy. Also, we
generate the synthesized light field by using a disparity warp-
ing scheme and render the high-quality DoF effects. Finally,
we map all processing stages onto the Android system and
control the computational imaging device by using the FCam
architecture. Our system efficiently renders dynamic DoF
effects with arbitrary aperture sizes and focal lengths in
a variety of indoor and outdoor scenes.

Our future efforts include adding modules such as auto-
exposure or HDR to improve the imaging quality. We would
also like to explore the possibility of implementing our
approach to sparse camera arrays with limited number of
views.
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