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ABSTRACT 

We used a new quantitative high spatiotemporal resolution phase imaging tool to explore the nuclear structure and 
dynamics of individual cells. We used a novel analysis tool to quantify the diffusion outside and inside the nucleus of 
live cells. We also obtained information about the nuclear spatio temporal mass density in metastatic cells. The results 
indicate that in the cytoplasm, the intracellular transport is mainly active (direct, deterministic), while inside the nucleus 
it is both active and passive (diffusive, random). We calculated the standard deviation of velocities in active transport 
and the diffusion coefficient for passive transport.  
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1. INTRODUCTION
It is known that to understand the behavior of human diseases, one needs to study at cell level. Nowadays scientists from 
different research fields are converging to unveil the relation between the structural and functional design of cells, how 
cells respond to environmental challenges, normal processes, such as cell cycle and differentiation, and abnormal 
processes like neoplastic transformations. However, the interior of a living cell is a complex environment, which is not 
easy to study1. 

In this regard, some mechanical models have been developed to characterize mechanical responses of living cells2, and it 
is possible to observe some relation between cell metabolism and human diseases3. 

It has been shown that cells response to stress, through sensors inside the nucleus4. In addition, it is possible to use the 
morphological changes of cells, to classify neoplastic transformations related with specific diseases5-6 and it has been 
established how cell metabolism play an important role in brain function and development7.  

The nucleus is particularly dynamic8, and in the case of nucleolus, its regulation has a spatio temporal dependence9. 
Therefore, it is necessary to develop new technologies in order to understand the role of intracellular transport in the 
inner function of the cell10-14. Regarding to the internal intracellular transport, some studies had measured the velocity of 
intracellular transport related with the metabolism in the cytoplasm15, as well as some characteristics implied in growth 
and dynamics12-13,16. In addition, tomographic techniques have been developed to study biological material16-17. 
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Some models of intracellular transport have been developed to research into this topic18, and it is possible to classify this 
transport inside cells, in passive diffusion and active transport, which requires chemical energy19-20. 

This study proposes a new technique based on Quantitative Phase Imaging (QPI) to investigate the intracellular transport 
(active and passive) in living cells. For this, we measured the changes in the refractive index, which are related to the in-
plane mass transport of the living cell, without the necessity of tracking individual particles for passive transport12-13,21.  

This method is based on the idea that the measured pathlength fluctuations report on the dry mass transport within the 
cell22. Hence, it is possible to have access to the dry mass density ρ(x,y) which is proportional to the refractive index; 
this technique is called Dispersion relation Phase Spectroscopy (DPS)19. 

2. METHODOLOGY
To obtain the quantitative phase images we use spatial light interference microscopy (SLIM), a recent optical 
microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry21-23. 
SLIM combines two classic ideas in light imaging: Zernike’s phase contrast microscopy24-25, which renders high contrast 
intensity images of transparent specimens, and Gabor’s holography [26], where the phase information from the object is 
recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-
length maps across the sample. SLIM is implemented as an add-on module to an existing phase contrast microscope13. 

We imaged HeLa cells in culture medium under physiological conditions, 37°C and 5% CO2 controls. Figure 1a shows 
an example of such quantitative phase imaging. 

Figure 1b illustrates the procedure developed to retrieve the dispersion relation associated with intracellular transport, 
which is the relationship between the decay rate, Γ, and wave number, q. From the SLIM phase maps, we calculated the 
dispersion relation, Γ(qx, qy). Thus, we first perform the spatial Fourier transform of each frame, then we calculate the 
temporal bandwidth, Γ, at each spatial frequency (qx, qy) via the temporal Fourier transform. Then, we azimuthally 
averaged to obtain the radial function Γ(q) (Fig. 1c).  

Figure 1. a) Ten HeLa cells studied over 5 minutes. b) Experimental procedure to obtain the dispersion relation Γ(qx, qy). c) 
Azimuthal average of Γ(qx, qy) to obtain Γ(q) , plotted in log-log axis. By fitting this experimental curve with a q1 function, it is 
possible to measure the standard deviation velocity in active transport. Fitting with a q2 function, gives information about the 
diffusion coefficient in passive transport.  
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