
Too big, too small, or just right? The influence of
multispectral image size on mosquito population predictions

in the Greater Toronto Area

Sydney A. DeMetsa, Amanda Ziemanna, Carrie Manoreb, and Curtis Russellc

aIntelligence and Space Research Div., Los Alamos National Lab, Los Alamos, NM, USA
bAnalytics, Intelligence & Technology Div., Los Alamos National Lab, Los Alamos, NM, USA

cPublic Health Ontario, Toronto, Canada

ABSTRACT

Outbreaks of West Nile Virus (WNV) and St. Louis Encephalitis (SLE) are projected to increase in frequency
and intensity with climate change, underlining the need to develop better mosquito borne disease (MBD) fore-
casting systems. Spread by Culex, WNV and SLE have seemingly random spatial and temporal outbreaks,
making such outbreaks difficult to predict. However, recent studies have found that mosquito abundance and
WNV/SLE transmission are strongly correlated, providing researchers with a foundation for the development
MBD forecasting systems. Mosquito populations are impacted by several environmental variables, such as hu-
midity, temperature, vegetation, and available breeding habitat. Mosquito-population forecasting models are
beginning incorporate spectral data, such as the normalized difference vegetation index (NDVI). Vegetation is
a crucial habitat for some mosquito species, and spectral data offers the best estimate of this habitat virtually
anywhere on Earth. Additionally, vegetation offers a proxy for understanding how water flows across a landscape,
a crucial consideration in urban areas with high landscape heterogeneity. This research explores how the spa-
tial scale (extent) of multispectral imagery used in mosquito population prediction models influences mosquito
population forecasts, specifically in the Greater Toronto Area. We derive three monthly time series of standard
spectral indices from multispectral imagery over the Greater Toronto Area from 2004 to 2015; each time series is
derived from images taken over the same locations, but using images taken over different spatial footprints. We
then explore how spectral indices across the three spatial scales perform as predictors for combined Cx. restuans
and Cx. pipiens populations.
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1. INTRODUCTION

The increasing burden of mosquito borne diseases (MBD) has underlined the importance of developing reliable
disease forecasts. West Nile Virus (WNV) and St. Louis Encephalitis (SLE) are the two most common mosquito
borne diseases (MBD) in North America. These MBDs are becoming more prevalent as climate change increases
mean annual temperatures, making more areas habitable to MBD vectors. Similarly, urbanization is increasing
temperatures in densely populated areas, furthering metropolitan susceptibility to MBD outbreaks. Recent
research has found that the seemingly sporadic outbreaks of WNV/SLE correlate to fluctuations in mosquito
populations; consequently, creating MBD forecasts requires the development of better mosquito population
predictions.1

Mosquito breeding habitats – specifically their availability and productivity – control the size of mosquito
populations. Temperature is commonly used to estimate the productivity of breeding habitats,1,2 and in general,
mosquitoes reproduce more quickly at warmer temperatures. For instance, Culex, the primary vectors of WNV
and SLE, follow this pattern, and reproduce in temperatures of 16°C to 30°C.3 Availability of breeding habitat is
often estimated using precipitation: the more rain, the greater the likelihood of standing water. Most mosquitoes,
including those in the Culex genera, deposit their eggs in standing water, making water’s presence crucial to

Send correspondence to Sydney DeMets; E-mail: sdemets@lanl.gov

Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXVI,
edited by Miguel Velez-Reyes, David W. Messinger, Proc. of SPIE Vol. 11392, 113920Y

© 2020 SPIE · CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2558128

Proc. of SPIE Vol. 11392  113920Y-1



their survival.4 The wide availability of rainfall and temperature data has resulted in their regular incorporation
into mosquito population prediction models.2,5–7 However, precipitation data often come at spatial resolutions
greater than 2 km, making it difficult to discern how water collects at finer spatial resolutions across an urban,
heterogeneous landscape. While this comparatively coarse resolution can inform mosquito population predictions
at large scales, the resolution exceeds the average lifetime range of Culex (anywhere from 500 m to 24,800 m),
which limits our ability to forecast mosquito populations in varied landscapes.8

Many mosquito population models rely heavily on precipitation and temperature data. However, other
data sources, especially multispectral imagery, are beginning to be more commonly incorporated in mosquito
population prediction models . Although multispectral imagery does not have the ability to directly measure
mosquito breeding habitats, measurements of types of vegetation can, for example, serve as indirect indicators
of water availability.9,10 In particular, spectral indices such as the Normalized Difference Vegetation Index
(NDVI) and the short-wave infrared version of the Normalized Difference Water Index (sNDWI) provide us with
quantifiable indicators of vegetation health or water content in leaves, respectively. Such indices also indicate
available resting and feeding habitat for mosquitoes, as Culex rely on trees and shrubs as feeding and resting
sites.11 Depending on the source of the imagery, the resolution of this indices could range anywhere from 10 m
(Sentinel-2) to 30 m (Landsat constellation) for global-coverage sensors, and even be as low as ∼2m in size for
tasking-based sensors (e.g., WorldView-3). Similarly, the frequent revisit rate of global-coverage multispectral
satellites (Sentinel-2, Landsat constellation) provides data collected at a temporal and spatial extent that cannot
be matched in situ.

Despite the comparatively high-resolution environmental information multispectral imagery offers, many
mosquito population forecasts which incorporate multispectral data aggregate these data up to political regions
of interest (e.g., state or province level). Such aggregation may mask how mosquito populations actually behave
within political boundaries, as many mosquito species, including Culex, will not travel more than 1 km to 2 km in
their lifetime.8 Previous work exploring forecasting mosquito populations in the Greater Toronto Area found that
multispectral data were significant predictors of mosquito populations in regions with more complete mosquito
trap coverage, whereas multispectral data could not produce meaningful mosquito population predictions in
regions sparsely sampled for mosquitoes;12 in other words, the completeness of the ground truth data had an
impact on the ability of the multispectral data to predict that ground truth data. Understanding the impact of
aggregated spectral data on mosquito population forecasts might pose a less urgent question if mosquito sampling
sites were evenly distributed across study areas of interest. However, this is often not the case, as most mosquito
research teams are limited by time, personnel, and resources. In short, testing against sub-regions that were
not sampled for mosquitoes (resulting in insufficient ground truth data) will hinder evaluation of the ability of
multispectral data to forecast mosquito populations, especially in urban areas with heterogeneous landscapes.

Culex restuans (Cx. restuans) and Culex pipiens (Cx. pipiens) are mosquito species found across Canada
and the United States. Public Health Ontario has surveyed spring through fall Cx. restuans and Cx. pipiens
populations across the Greater Toronto Area since 2004. Using these survey data and Landsat 5 data, we sought
to discern if increases in the spatial scale of multispectral image data impact mosquito population predictions.

2. METHODS

2.1 Study area and mosquito data

The Greater Toronto Area (GTA), located in Ontario, Canada, comprises York, Durham, Peel, Toronto, and
Halton Regions. Public Health Ontario has collected mosquito data across Ontario and the GTA every spring
and summer since 2004. Mosquito count data were obtained from the Ontario mosquito population surveillance
program. Sampling sites were distributed across Ontario every April through October from 2004-2011. One
georeferenced mosquito trap was placed at each sampling site; the location of some sampling sites varied from
2004-2011, but only sites that fell within the GTA and were sampled every year were included in this analysis.

Traps were sampled at varying time intervals. When sampling sites were visited, the number of Culex in
the given site’s trap was recorded, and the traps were then emptied and reset. For this study we chose thirty
sites based on sampling location and sampling frequency (Fig. 1; selected mosquito trap sites were sampled each
year from 2004-2011 and had been sampled at least twice per month from June to September of each study
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year). Sampling weights were added to mosquito-count data to account for differences in the number of sampling
events for each trap. We then computed the mean of the weighted mosquito counts of all thirty traps for each
month included in the study (e.g., the average weighted mosquito count for July of 2006 was 124 mosquitoes).
Additionally, we calculated the mean monthly air temperature for each month included in the study, using
historical data from the Toronto City weather station.13

Figure 1. Location of Toronto (left) and selected trap sites, denoted by blue diamonds (right).

2.2 Multispectral data

We used Landsat 5 multispectral imagery for this analysis, as it was in operation for the entire time frame
over which the mosquito trap data were collected. Landsat 5 was a multi-instrument global coverage satellite
whose Thematic Mapper sensor had 7 bands covering the visible through the near infrared (NIR), short-wave
infrared (SWIR), and thermal infrared (TIR) wavelength ranges, and was jointly managed by the U.S. Geological
Survey (USGS) and the National Aeronautics and Space Administration (NASA). Landsat 5 had revisit rate
of approximately 16 days and a spatial resolution of 30 m, allowing for the derivation of multiple time series
of indices over the full seven-year range of this study.14 We accessed the imagery through the Descartes Labs
Platform.15

To test how increases in the area of spectral data influences mosquito population predictions, circles of radius
0.5 km, 1 km, and 2 km, respectively, were drawn around each trap previously selected for analysis (Fig. 2).
These radii are based on the lifetime travel limits of mosquitoes discussed in Section 1. For each month and
for each width of the concentric circles, we computed the following indicators from the Landsat 5 imagery:
the Normalized Difference Vegetation Index (NDVI, Eq. (1)), Normalized Difference Built-up Index (NDBI,
Eq. (3)), green-based Normalized Difference Water Index (gNDWI, Eq. (2)), SWIR-based Normalized Difference
Water Index (sNDWI, Eq. (4)), and the Normalized Burn Ratio (NBR, Eq. (5)). We computed each index for
every pixel in a given region, then aggregated the results to circle-level summary statistics, generating a total
of three datasets (i.e., datasets with aggregated 0.5 km radius data, 1 km radius data, and 2 km radius data,
respectively). For each radius, we have a monthly time series of the following summary statistics for each of
the pixel-level indices calculated within the region: mean, minimum, maximum, 2% minimum threshold, 98%
maximum threshold, and standard deviation.

Proc. of SPIE Vol. 11392  113920Y-3



Figure 2. Example areas of interest across various radii. Image courtesy of Google Earth.

NDV I =
NIR−Red

NIR + Red
(1)

NDBI =
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(2)

gNDWI =
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(3)

sNDWI =
NIR− SWIR1

NIR + SWIR1
(4)

NBR =
NIR− SWIR2

NIR + SWIR2
(5)

2.3 Autoregressive distributive lag model

Distributive lag models (DLMs) are dynamic models in which the effect of n regressors (predictors) on y (the
value of interest) occurs over time rather than all at once. Since mosquito populations are autoregressive (i.e.,
current and past mosquito populations inform future mosquito populations), an autoregressive DLM (ARDL)
was used for this study. Additionally, this allows us to assess how NDVI at timestep tn−2 influences the mosquito
population at time tn. Here, we gave the DLMs spectral data and mosquito data averaged across all circles for
all three circle sizes. Mean monthly temperature and the summary statistics on the derived spectral indices
(Eqs. (1)-(5)) were used as predictors, in addition to mosquito population. Lags for predictors were selected
using the AIC criteria.16 Alpha value was set at 0.05. All modeling and statistical analysis was programmed in
R.
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3. RESULTS

Multispectral data from each spatial footprint was able to significantly predict mosquito populations. sNDWI
and NBR indices tended to be the most correlated with the weighted mosquito populations. The most accurate
mosquito population predictions were derived from sNDWI data, though each model needed the average monthly
temperature to be incorporated to produce significant results.

3.1 0.5 kilometer model

Mosquito population predictions developed using data from the 0.5 km circles were significant (Fig. 3, p < 0.01).
The 98th percentile of sNDWI (sNDWI-98, 2 percent short of the sNDWI maximum value) and mean monthly
temperature were the regressors which best predicted mosquito populations. Mean monthly temperature had
a lag time of two months, and sNDWI-98 had a lag time of six months. sNDWI-98 was a significant predictor
of mosquito populations at t − 3 months (p < 0.05); mean monthly temperature did not have a significant
impact on mosquito populations at any particular time step. Overall, the model describes 93.5% of variation in
mosquito populations (R2 = 0.9359), with the independent variables (mean monthly temperature and sNDWI-
98) describing 88.1% of variation in mosquito populations (adjusted R2 = 0.8805).

Figure 3. Predicted and observed mosquito counts generated from the 0.5 km radius dataset, where the predicted
mosquito counts were generated using multispectral indices computing within the 2.0 km radius. The Study Month (x
axis) is the nth month included in this study, and the shaded region marks the 95% confidence interval for predicted
mosquito values. Error bars indicate ± standard error. R2 = 0.9359, p < 0.01, and mean absolute scaled error (MASE)
= 0.3517.

3.2 1.0 kilometer model

Mosquito population predictions developed using data from the 1.0 km circles were significant (Fig. 4, p <
0.01). sNDWI-98 and mean monthly temperature, again, best predicted mosquito populations. Mean monthly
temperature had a lag time of two months; sNDWI-98 also had a lag time of two months (which was shorter
than the lag time selected for sNDWI-98 when derived from the 0.5 km spectral data). Neither sNDWI-98
nor mean monthly temperature was a significant predictor of mosquito populations at any lag length, although
sNDWI at time t was a marginally significant predictor of mosquito abundance (p < 0.1). In total, the model
described 91.6% of variation in mosquito populations (R2 = 0.9159). The independent variables (mean monthly
temperature and sNDWI-98) described 89.8% of variation in mosquito populations (adjusted R2 = 0.8949).
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Figure 4. Predicted and observed mosquito counts generated from the 1.0 km radius dataset, where the predicted
mosquito counts were generated using multispectral indices computing within the 2.0 km radius. The Study Month (x
axis) is the nth month included in this study, and the shaded region marks the 95% confidence interval for predicted
mosquito values. Error bars indicate ± standard error. R2 = 0.9159, p < 0.01, and MASE = 0.4009.

3.3 2.0 kilometer model

Mosquito population predictions from the model developed using data from the 2.0 kilometer circles were signifi-
cant (Fig. 5; p < 0.01). Mean sNDWI and mean monthly temperature were the strongest predictors of mosquito
populations. Mean monthly temperature had a lag time of two months, and mean sNDWI had a lag time of one
month. Neither mean sNDWI nor mean monthly temperature was a significant predictor of mosquito populations
at any particular lag length, although mean monthly temperature at t− 2 was a marginally significant predictor
of mosquito populations at t (p < 0.1). The model describes 91% percent of variation in mosquito populations
(R2 = 0.9096), with the independent variables (mean monthly temperature and mean sNDWI) describing 88.2%
of variation in mosquito populations (adjusted R2 = 0.8821).

3.4 Spectral predictors

The strongest spectral predictors of mosquito abundance, along with their respective lag times, changed with each
increase in the radius over which the spectral indices were computed. For the 0.5 km dataset, sNDWI-98, gNDWI-
98, and gNDWI-max were the three most correlated spectral variables to mosquito population. Each index had
correlation coefficients of 0.4587, 0.2772, and 0.2768, respectively. When the model was trained using mean
monthly temperature and gNDWI-98 data, the model described 87.73% of variation in mosquito abundance; the
model trained with mean monthly temperature and gNDWI-max data explained 87.60% of variation in mosquito
abundance. Mosquito abundance was most correlated with sNDWI-98, sNDWI-mean, and NBR-mean derived
from the 1.0 km dataset (correlation coefficients = 0.4577, 0.4563, 0.4245, respectively). sNDWI-mean and NBR-
mean (along with mean monthly temperature) each accounted for 88.5% of variability in mosquito populations.
Lastly, mosquito abundance was most closely correlated to sNDWI-mean, NBR-mean, and NDVI-98 derived
from the 2.0 km spectral index (correlation coefficients = 0.4326, 0.3937, 0.3815, respectively). When the model
was trained using mean monthly temperature and NBR mean data, the model described 89.8% of variation in
mosquito abundance; replacing NBR-mean with NDVI-98 increased variance described to 90.1%.

4. DISCUSSION

The primary goal of this research was to examine how the spatial footprint of the imagery used to compute mul-
tispectral indices influenced mosquito population predictions. Significant population predictions were generated
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Figure 5. Predicted and observed mosquito counts generated from the 2.0 km radius dataset, where the predicted
mosquito counts were generated using multispectral indices computing within the 2.0 km radius. The Study Month (x
axis) is the nth month included in this study, and the shaded region marks the 95% confidence interval for predicted
mosquito values. Error bars indicate ± standard error. R2 = 0.9159, p < 0.01, and MASE = 0.3795.

using spectral data pulled from all three footprint sizes. However, mosquito population predictions derived from
the 1 km and 2 km data had larger deviations from the observed mosquito populations than predictions made
using 0.5 km radius spectral imagery. The model predictions from the 0.5 km radius spectral imagery better
captured fluctuations in the amplitude of mosquito populations, as evidenced by the lower MASE score overall
for the 0.5 km model. These results suggest that aggregating spectral data over large heterogeneous areas may
negatively impact our ability to predict mosquito population. Still, a more thorough analysis will need to be
completed in order to better estimate the error introduced into mosquito population models by using spectral
data from areas significantly larger than the area over which mosquito traps are actually deployed.

It is also worth noting that, although the R2 values of the mosquito population predictions are lower than
those in DeMets et al., 2020, the variances in mosquito populations described in this study are consistently
higher.12 This suggests that spectral indices may do a better job of estimating mosquito abundance when using
multispectral imagery taken from smaller areas around mosquito sampling sites. On a similar note, many of
the sites included in this analysis fell within the Toronto region, one of the regions where spectral data failed to
significantly predict mosquito populations in DeMets et al., 2020, despite the comparatively extensive sampling
of the Toronto region. 12 This indicates that removing “excess” spectral image data, or data which exceed
the (spatial) lifetime travel range of the mosquito species of interest, can help improve mosquito population
predictions in areas with high landscape heterogeneity.

One unexpected finding was that sNDWI and NBR were most closely correlated to mosquito populations.
sNDWI remained the most closely correlated to and the strongest spectral predictor of mosquito populations.
sNDWI indicates the amount of water contained in tree canopies, thus providing a proxy measure for both the
amount of vegetation and the amount of water across a landscape. Seeing sNDWI as a strong predictor of
mosquito populations makes sense from an ecological standpoint, as Culex need water to breed, and rely on
vegetation for resting and feeding. Interestingly, NBR (the normalized burn ratio) was also strongly correlated
with mosquito abundance, and was a statistically significant predictor of mosquito abundance across all three
of our data sets. The reason why NBR presents as a good predictor of mosquito abundance merits further
investigation. Lastly, NDVI, the most commonly used multispectral index in mosquito population modeling
and forecasting, did not perform as well; in fact, it only became the third most correlated spectral index with
mosquito populations when using the multispectral indices computed from the 2.0 km data.

Future work will explore how mosquito population predictions are impacted by using multispectral imagery
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with larger spatial footprints. Additionally, we will examine how successively larger spatial footprints impact
which spectral indices emerge as the strongest predictors of mosquito abundance.

5. ACKNOWLEDGMENTS

We thank Descartes Labs for providing streamlined access to remote sensing imagery and we thank Public Health
Ontario for mosquito data. We also thank Dr. Deborah Shutt for her help with cleaning and processing the
mosquito data, and for her help with the models. This work was funded by the Los Alamos Laboratory Directed
Research and Development (LDRD) Program.

REFERENCES

[1] Mulatti, P., Ferguson, H. M., Bonfanti, L., Montarsi, F., Capelli, G., and Marangon, S., “Determinants of
the Population Growth of the West Nile virus Mosquito Vector Culex pipiens in a Repeatedly Affected Area
in Italy,” Parasites & vectors 7(26) (2014).

[2] Larson, S. R., Degroot, J. P., Bartholomay, L. C., and Sugumaran, R., “Ecological Niche Modeling of
Potential West Nile Virus vVctor Mosquito Species in Iowa,” Journal of Insect Science 10(110) (2010).

[3] Loetti, V., Schweigmann, N., and Burroni, N., “Development Rates, Larval Survivorship and Wing Length
of Culex pipiens (Diptera: Culicidae) at Constant Temperatures,” Journal of Natural History 45(35-36),
2203–2213 (2011).

[4] Day, J. F., “Mosquito Oviposition Behavior and Vector Control,” Insects 7.4(65) (2016).

[5] Wang, J., Ogden, N. H., and Zhu, H., “The Impact of Weather Conditions on Culex pipiens and Culex restu-
ans (Diptera: Culicidae) Abundance: A Case Study in Peel Region,” Journal of Medical Entomology 48(2),
468–475 (2011).

[6] Ruiz, M. O., Chaves, L. F., Hamer, G. L., Sun, T., Brown, W. M., Walker, E. D., Haramis, L., Goldberg,
T. L., and Kitron, U. D., “Local Impact of Temperature and Precipitation on West Nile Virus Infection in
Culex species Mosquitoes in Northeast Illinois, USA,” Parasites & Vectors 3(19) (2010).

[7] DeFelice, N. B., Schneider, Z. D., Little, E., Barker, C., Caillouet, K. A., Campbell, S. R., Damian, D.,
Irwin, P., Jones, H. M., Townsend, J., et al., “Use of Temperature to Improve West Nile Virus Forecasts,”
PLoS Computational Biology 14(3), e1006047 (2018).

[8] Hamer, G. L., Anderson, T. K., Donovan, D. J., Brawn, J. D., Krebs, B. L., Gardner, A. M., Ruiz, M. O.,
Brown, W. M., Kitron, U. D., Newman, C. M., et al., “Dispersal of Adult Culex mosquitoes in an Urban
West Nile Virus Hotspot: A mark-capture study incorporating stable isotope enrichment of natural larval
habitats,” PLoS Neglected Tropical Diseases 8(3) (2014).

[9] Peters, A. J., Walter-Shea, E. A., Ji, L., Vina, A., Hayes, M., and Svoboda, M. D., “Drought Monitoring with
NDVI-based Standardized Vegetation Index,” Photogrammetric Engineering and Remote Sensing 68(1), 71–
75 (2002).

[10] Ziemann, A., Fairchild, G., Conrad, J., Manore, C., Parikh, N., Del Valle, S., and Generous, N., “Predicting
dengue incidence in Brazil using broad-scale spectral remote sensing imagery,” in [Proc. Int. Geoscience and
Remote Sensing Symposium (IGARSS) ], IEEE (July 2018).

[11] Gardner, A. M., Anderson, T. K., Hamer, G. L., Johnson, D. E., Varela, K. E., Walker, E. D., and Ruiz,
M. O., “Terrestrial vegetation and aquatic chemistry influence larval mosquito abundance in catch basins,
chicago, usa,” Parasites & vectors 6(1), 9 (2013).

[12] DeMets, S., Ziemann, A., Manore, C., and Russell, C., “Improving mosquito population predictions in
the greater toronto area using remote sensing imagery,” in [Proc. IEEE Southwest Symposium on Image
Analysis and Interpretation (SSIAI) ], IEEE (March 2020).

[13] Meteorological Service of Canada, “Historical Climate Data.”

[14] USGS, NASA, “Landsat Missions.”

[15] Descartes Labs, “Descartes Labs Platform.”

[16] Liew, V. K.-S., “Which lag length selection criteria should we employ?,” Economics bulletin 3(33), 1–9
(2004).

Proc. of SPIE Vol. 11392  113920Y-8


