PROCEEDINGS OF SPIE

Radar Sensor Technology XXVII

Abigail S. Hedden Gregory J. Mazzaro Ann Marie Raynal Editors

1–3 May 2023 Orlando, Florida, United States

Sponsored and Published by SPIE

Volume 12535

Proceedings of SPIE 0277-786X, V. 12535

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Radar Sensor Technology XXVII*, edited by Abigail S. Hedden, Gregory J. Mazzaro, Ann Marie Raynal, Proc. of SPIE 12535, Seven-digit Article CID Number (DD/MM/YYYY); (DOI URL).

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510661844

ISBN: 9781510661851 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) SPIE.ora

Copyright © 2023 Society of Photo-Optical Instrumentation Engineers (SPIE).

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of fees. To obtain permission to use and share articles in this volume, visit Copyright Clearance Center at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: A unique citation identifier (CID) number is assigned to each article in the Proceedings of SPIE at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

vii Conference Committee

SYSTEMS AND APPLICATIONS I

SYSTEMS AND APPLICATIONS I
Statistical analysis of radar parameters from published research [12535-1]
A proposed concept for metacognitive configuration switching for tracking radar systems [12535-2]
Long-range single-target tracking with UWB SoC: further development [12535-3]
SYSTEMS AND APPLICATIONS II
Application of low-cost software-defined radio to augmented radio navigation [12535-5]
Airborne antenna placement optimization for navigational aid infrastructure inspection mission [12535-6]
Optimized phase shifts in intelligent reflective surfaces for robust radar-based indoor coverage enhancement [12535-7]
ALGORITHMS AND PROCESSING
Sudoku sequences, Costas sequences, and random permutations in a multi-sub-FDA radar [12535-9]
Connected spectrogram graph fitting and random optimization combined time frequency analysis [12535-10]
The extended Luenberger sliding innovation filter [12535-12]
Quantum radar: a brief review of current progress and new methods of understanding and signal processing, validated by experimental results [12535-13]

	PHENOMENOLOGY I
12535 0D	RF stealth for small UAS: characterization and evaluation of the impacts of RFI and RCS [12535-14]
12535 0E	Radar micro-Doppler predictions and analysis for the DJI Phantom 2 drone at X, V, and W-band $[12535-15]$
	PHENOMENOLOGY II
12535 OF	Physical layer mechanisms for coherent change detection [12535-18]
12535 0G	Application of the Boltzmann-Ehrenfest principle to the resonant frequency shift of a radio-wave electromagnetic cavity containing a dielectric object [12535-19]
12535 OH	Loaded waveguide measurements of plastic explosives at V-band [12535-20]
	MILLIMETER- AND SUBMILLIMETER-WAVE SENSING AND IMAGING
12535 01	Short-range measurements of dielectric and conductive targets using a 38-GHz active incoherent millimeter-wave imaging array [12535-21]
12535 OJ	Incoherent millimeter-wave imaging using 5G communications signals of opportunity for detection of cracks in building materials $[12535-22]$
12535 OK	Partial image reconstruction adapted to extracting the frequency spectrum of discrete targets in millimeter-wave AIT images [12535-24]
12535 OM	Imaging experiments with a 340-GHz FMCW radar and frequency-diverse holograms [12535-27]
12535 ON	Fast and sensitive MMW imaging system with up-conversion readout working in the NIR zone [12535-28]
	SPECIAL SESSION ON AUTOMOTIVE RADAR
12535 0Q	Millimeter wave radar-based road segmentation [12535-30]
	AI/ML AND RADAR SENSOR TECHNOLOGY: JOINT SESSION WITH CONFERENCES 12535 AND 12538
12535 OR	Investigation of potential 5G RF interference with C-band radar operations and mitigation solutions [12535-32]

12535 OS	Ghost imaging at submillimeter waves: correlation and machine learning methods [12535-33]
12535 OT	Multimodal feature assessment using multibranch 3D CNN to BI-LSTM for feature level multi-polarization SAR image data fusion and vehicle identification [12535-34]
	POSTER SESSION
12535 OU	Extraction of ground clutter return interference from downward-looking UWB radar signal via low-rank and sparse optimization [12535-36]
	DIGITAL POSTER SESSION
12535 OV	Fourier-domain image reconstruction in near-field microwave imaging using a dynamic metasurface antenna: a sparse-sampling-based approach [12535-11]
12535 OW	UAV micro-Doppler recognition comparison of HeRM lines versus blade flash phenomenology [12535-16]
12535 0W 12535 0X	·· · · · · · · · · · · · · · · · · · ·

Conference Committee

Symposium Chairs

Tien Pham, The MITRE Corporation (United States) **Douglas R. Droege**, L3Harris Technologies, Inc. (United States)

Symposium Co-chairs

Augustus W. Fountain III, University of South Carolina (United States) **Teresa L. Pace**, L3Harris Technologies, Inc. (United States)

Program Track Chair

Ann Marie Raynal, Sandia National Laboratories (United States)

Conference Chairs

Abigail S. Hedden, U.S. Army Combat Capabilities Development Command (United States)

Gregory J. Mazzaro, The Citadel-The Military College of South Carolina (United States)

Ann Marie Raynal, Sandia National Laboratories (United States)

Conference Program Committee

Jeffrey Barber, U.S. Department of Homeland Security (United States) **Matthew J. Brandsema**, Applied Research Laboratory, The

Pennsylvania State University (United States)

Joseph C. Deroba, U.S. Army Combat Capabilities Development Command (United States)

Armin W. Doerry, Sandia National Laboratories (United States)

Ryan A. Elwell, DEVCOM C5ISR (United States)

Mark Govoni, DEVCOM Army Research Laboratory (United States)

Sevgi Zubeyde Gurbuz, The University of Alabama (United States)

Majeed M. Hayat, Marquette University (United States)

Seong-Hwoon Kim, Spartan Radar (United States)

Bingcheng C. Li, Lockheed Martin Corporation (United States)

Changzhi Li, Texas Tech University (United States)

Neeraj Magotra, Western New England University (United States)

Anthony F. Martone, DEVCOM Army Research Laboratory (United States)

Claire Migliaccio, Université Côte d'Azur (France)

Thomas Mitchell, ICEYE Oy (United States)

Ram M. Narayanan, The Pennsylvania State University (United States)

Marius Necsoiu, U.S. Army Research Laboratory (United States)
Lam H. Nguyen, DEVCOM Army Research Laboratory (United States)
Markus Peichl, Deutsches Zentrum für Luft- und Raumfahrt e.V.
(Germany)

Zhengyu Peng, Aptiv (United States)

Brian R. Phelan, DEVCOM Army Research Laboratory (United States)

Thomas J. Pizzillo, U.S. Naval Research Laboratory (United States)

Zhijun G. Qiao, The University of Texas Rio Grande Valley (United States)

Kenneth I. Ranney, DEVCOM Army Research Laboratory (United States)

Duncan A. Robertson, University of St. Andrews (United Kingdom)

David M. Sheen, Pacific Northwest National Laboratory (United States)

David Tahmoush, Northeastern University (United States)

Aleksi A. Tamminen, Aalto University (Finland)

Julio V. Urbina, The Pennsylvania State University (United States)

Russell Vela, U.S. Army Space and Missile Defense Command (United States)

Salvador Elias Venegas-Andraca, Tecnológico de Monterrey (Mexico)

David A. Wikner, DEVCOM Army Research Laboratory (United States)

Okan Yurduseven, Queen's University Belfast (United Kingdom)

Yan Rockee Zhang, The University of Oklahoma (United States)

Ruolin Zhou, University of Massachusetts Dartmouth (United States)