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paradox

theory intuition real World

More sensors 
cannot degrade 
performance (on 
average), if we 
use the optimal 
algorithms.

More sensors 
should improve 
estimation & 
decision 
accuracy.

More sensors 
often degrade 
performance 
significantly.

Explanation for paradox:
• (1) Bugs in the software
• (2) Suboptimal algorithms or bad algorithms
• (3) Data association errors
• (4) Unresolved measurements
• (5) Residual sensor bias & drift errors (tropospheric 

refraction, ionospheric errors, IMU errors, GPS errors, 
radome refraction, scan dependent monopulse bias, 
monopulse error slope, FPA errors, etc.)

• (6) Multipath, ducting & clutter
• (7) Jamming, chaff, flares & other countermeasures
• (8) Ill-conditioning of the covariance matrices or the particle 

filter probability density
• (9) Nonlinearities in the estimation problem
• (10) Glint (i.e., targets are not points and they rotate)
• (11) Limitations of comm links & format & info. content
• (12) Incorrect or incomplete probability model (e.g., 

covariance inconsistency or assumption of zero correlation 
or statistical independence between random variables*)
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Bias can ruin multi-sensor fusion
300 total targets: 30 missiles, 10 targets per missile

Position error σ = 100m, Separation of targets in missile complex = 500m, 1500m
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GNPL is much more robust to bias than iterative JVC 
(d = 6 & N = 10 tracks)
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    Paradox in real world sensor fusion 
 
                      Fred Daum 
 
In theory and intuitively, one would expect that using more 
sensors for estimation and decisions would improve 
performance (on average).  Assuming optimal fusion algorithms, 
this can be proved rigorously under very mild technical 
assumptions.  But in the real world with suboptimal fusion 
algorithms, we often find that using more sensors actually 
degrades performance significantly.  This is the case for several 
big expensive important high tech real world applications (which 
shall remain nameless).   Aside from bugs in the software and 
poor algorithm design, generally there are several reasons for 
this paradox, including: (a) neglect of data association errors; 
(b) neglect of unresolved measurements; (c) neglect of residual 
sensor bias and drift errors (e.g., tropospheric & ionospheric 
refraction, radome refraction & reflections, IMU & GPS errors, 
scan dependent monopulse bias for phased array radars, and 
multipath); (d) ill-conditioned error covariance matrices in the 
EKF or UKF or batch or ill-conditioned densities in the particle 
filter (despite double precision floating point arithmetic); (e)   
nonlinearities in the estimation problem, which render the 
algorithms highly suboptimal; (f) neglect of some important 
physical effects in the sensors, environment and targets (e.g., 
real targets are not points and they generally rotate); (g) 
latencies and bandwidth constraints and unhelpful protocols in 
the comm network; etc. 

xx



Information Exchanged Between Fusion 
Tracker and Other Fusion Functions

Panel Discussion on Real-World Issues and 
Challenges in Integration of Fusion Function  

5 April 2010

Excerpts From
Multiple Target Tracking Lecture Notes

Oliver E.  Drummond, Ph.D., P.E.
CyberRnD, Inc and Consulting Engineer

Phone: 310-838-5300
Email: Drummond@Att.Net

MTT Lecture Notes
Copyright    © 2010
Oliver E. Drummond

Sp10_OEDPanelPrestFn.ppt   2

Topics

Part 1:  Introduction and Background

Part 2:  Information Exchanged Between Fusion 
Tracker and Other Fusion Functions

Part 3:  Conclusions

Part 4:  References

xxi



Introduction and Background

MTT Lecture Notes
Copyright    © 2010
Oliver E. Drummond

Sp10_OEDPanelPrestFn.ppt   4

A View on Classifying the
State-of-the-Art for Tracking or Fusion

texttextWell Within the SOA

 

Not Within SOA

Just Within the SOA

Degrees Within The State of the Art

Within SOA

Symbol Test Conditions
A Operational System
B Field Tests or Real Data
C HiFi Monte Carlo Simulation
D Feasiability Testing or Conceptual 

Degrees of Maturity

Symbol Degree
+ Well Within

Within
- Just Within

Degrees Within SOA

Types of Targets Tracked
Submarine
Surface
Ground
Air Breather
Ballistic

Example: Look-Down Single-Sensor MHT Ground Tracking:  B-
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Issues of the SOA of Processing

Two Different Aspects of the SOA. 
Note that the process of interest could be a function (bias estimation), 
major function (tracker), or system (entire fusion system)

What is the SOA for a specific type of threat and applications?
How do the requirements, goals, or intent of a specific project/program 
compare to the current SOA?

When Asked What Is the SOA of a Particular Function, One 
Engineer Would Reply With One of the Following:

We developed that processing “X” years ago.
We are developing that  now.
That is not important.
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On The State-of-the-Art Of
Target Tracking and Related Processing 

(A Personal Opinion)

The State-of-the-Art (SOA) of Target Tracking with Single Sensor 
Data Under Challenging Conditions: 

Has improved greatly in recent years relative to what is achievable -- is 
moderately mature
Improvements are still needed for some specific conditions

Fusion Tracking SOA Lags Far Behind Single-Sensor Tracking
Fusion introduces opportunities and challenges that do not
exist in tracking with single sensor data
N-sensors offer potential for superior performance relative to tracking 
with data from a single sensor.

Increased sample rate provides an accuracy increase of at least
Three well located radars provide an accuracy increase of about a factor of 4
Offers opportunity for enhanced survivability and graceful degradation 

Major Trade-Off is Performance Vs Required Resources & Cost

N
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Some Fusion Considerations

There Are No Off-the-Shelf, Universal Fusion Processors;  
Fusion System Must Be Developed Based on the Requirements 
and Specific of the Application, Such as Threat Characteristics 
and Available Hardware.
The Fusion System Design Depends on:

Relative location of the sensors, fusion processors, and users,
e.g., physically centralized vs. distributed
Communications and processor capacities; threat characteristics
System requirements relative to fusion state-of--the art

Even for a Specific Application, Many Different Types of Sensor 
Data Fusion Processing Systems Are Possible Each with 
Different Function Decompositions. 
Fusion Algorithm Architecture and Functional Decomposition
Depends on the Specific Fusion System Approach. A Specific
Type of Fusion System Has Been Chosen to Simplify This
Presentation.
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Assumptions for This Presentation

To Simplify This Presentation, Assumed a Specific Fusion 
Problem and Approach (Unless Indicated Otherwise):

Multiple platforms; distributed sensors, users, fusion processors
IFF, ATR, 2-D, and 3-D data sensors;  moderate coverage overlap
Limited resolution, moderately close targets, and false signals
Moderate Overlap of Coverage by Sensors
Air defense (small targets);  require SIAP & graceful degradation 
Requirements: ambitious with challenging conditions (beyond SOA) 
Moderate communications, processor, and weapons resources
Measurement and tracklet (hybrid) fusion for track maintenance
Distributed 2-D data assignments with feature/attribute aided tracking

Address One of the Two Types of Fusion Development Issues
Not Addressed: Algorithm development to accommodate multiple 
sensor data fusion tracking instead of data from a single sensor
Address explicit interaction between the fusion tracker and other 
fusion functions and their responses
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Fusion Functions With Inputs to
or Outputs From Tracker  (Table 1)

System Major Function  To Tracker From Tracker
1 Display X
2 Human Override X
3 Implement Commanders Guidance X X
4 Manage Processing X X
5 Data Base Management X X
6 Classification / ATR / Discrimination X X
7 CID X X
8 Threat/Situation Assessment X X
9 Kill Assessment X X
10 Target-Weapon Assignment X X
11 Data Distribution X X
12 Sensor Resource Management X X
13 System Damage Control X X

Function-Tracker Interface 
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Processing That Fusion Trackers Share 
With Most Other Functions

All Functions Employ Separate Processing of Classified 
Information.  Tracker Marks Security of a Track When It First 
Employs Classified Measurements That Makes the Track 
Classified.

Most Functions Need to Know If And When a Track Switch Is 
Identified and the Appropriate Tracks Are Marked Accordingly.

Most Functions:
Contribute to setting the value of the track’s “potential value 
added” (or “priority”) by evaluating the importance of updating the 
track using the potentially available information. 
Each function shows preference in processing based on the track’s 
potential value added.
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Covariance Consistency Is More 
Important in Fusion Systems

Covariance Consistency Measures How Realistically the 
Tracker Computed Covariances Reflects the Actual Innovation 
or Estimation Error Covariance.  Currently, Many Fusion Tracks 
Exhibit Degraded Consistency.
Primary Source of Inconsistency is Tracker Model Errors in the 
Structure and Parameters. Causes Can Include:

Inadequate Compensation of Residual Biases of Measurements and 
Their Time Tags; of Sensor Location and Orientation; and 
Inconsistency of their Covariances.
Misrepresented Covariance Matrix of the Input Data
Errors in Dynamic State Transition Model or Parameters
Missing (or Incorrect) Compensation for Possible Misassociation
Linearization of Non-linearities, e.g., Coordinate Transformations
Round-off Errors or Simplified (or Incorrect) Algorithm Design
Hardware or Software Implementation Errors or Damage
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Many Functions Expected to Depend on 
Reasonable Covariance Consistency

Functions Expected to Depend on Reasonable Covariance 
Consistency of Fusion Tracker Estimated Kinematic, Features, 
or Attribute States:

Human Override
Manage Processing
Classification / ATR / Discrimination
CID
Threat/Situation Assessment
Kill Assessment
Weapons Manager
Data Communications Manager
Sensor Resource Manager
System Damage Control
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Challenging Interactions Between 
Fusion Tracker and Processor Manager

Advanced Systems Should Require Graceful Degradation 
In Spite of Unexpected Regions of Dense Targets and Large 
Number of Targets Plus Damaged/Degraded Hardware. 

Tracker needs to provide estimates of processing load prior to  processing a 
frame of data (or provide the information so Processor Manager can compute 
it).
Tracker needs to be able to adjust processing parameters to stay within 
processing load budget provided by Processor Manager for the current frame 
of data.  

Both Functions Contribute to Deciding for Which Tracks to 
Distribute Tracklets.

Tracker Assists in Identifying Processing Inconsistencies or 
Errors and Identifying Potential Sources of the Problem.
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Major Interactions Between Fusion 
Tracker and Sensor Resource Manager

Tracker Provides Sufficient Information (Potential Value Added) 
for Sensor Resource Manager to Identify Which Sensor Regions 
Would Provide the Most Useful Information for Improved 
Accuracy and Consistency of Tracker Estimated Kinematic, 
Feature, and Attribute States.
Both Functions Contribute to Deciding From Which Target 
Tracks to Distribute Tracklets.
Tracker Requests Measurements From Specific Sensor Regions 
Needed to Update Bias Estimates and Their Covariance 
Consistency.
Tracker Requests Measurements From Specific Sensor Regions 
Needed to Update Adaptive Estimates of Tracker Processing 
Parameters and Their Covariance Consistency.
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Interactions Between Fusion Tracker 
and Other Fusion Functions (1 of 3)

Tracker Provides Sufficient Information to Data Base Manager 
for It to Maintain a Relational Data Based That Also Supports 
Geographical Queries. 

The goal is to let the operator (Human Override) simplify what is on 
the display and manage by exception 

The goal is to provide operator ready access to more information 
on demand including relational queries,

Note that the assumption that all data is stored in the on-board 
database including track data.  A fusion function obtains track 
information from the Data Base Manager not from the Tracker.
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Interactions Between Fusion Tracker 
and Other Fusion Functions (2 of 2)

The Weapons Manager Provides the Fusion Tracker (by Way of 
the Data Base) When a Weapon Engages a Target and the 
Weapons Nominal Trajectory So It Can Be Easily Tracked (If 
Applicable).

The Fusion Tracker Needs to Be Able to Change Track Data in 
Response to Changes Directed by the Human Override. 

Tracker Provides Sufficient Information for the Data 
Communications Manager to Identify (If Any)

Which measurements received from other platforms not to process 
on-board (screen out, discard)
.Which on-board measurements not to distribute to other platforms.
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Interactions Between Fusion Tracker 
and Other Fusion Functions (3 of 3)

The Kill Assessment Function Provides the Fusion Tracker (by 
Way of the Data Base) the Status of Each Target Engaged and If 
It Still Exists but Is Harmless or It Was Destroyed and the Track 
Can Be Terminated.

Tracker Provides Sufficient Information to the System Damage 
Control to Identify Inconsistent Processed Data (Such Degraded 
SIAP) or Faulty Fusion Processing or Hardware Anywhere in the 
Fusion System So That the System Can Be Reconfigured.
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Conclusions
(A Personal Opinion)

The “Hi Fi Sim” SOA of Basic Fusion Kinematic Tracking Is 
Moderately Mature (“Within’’ That SOA).
The SOA of the Entire Fusion Processing System Is Far Less 
Mature Than Basic Fusion Tracking.

Tracker Algorithm Development Is Needed to Take Advantage of 
the Opportunities for Substantial Improvement of Functional 
Performance of Both Tracking and Target Classification by More 
Effectively Fusing the Data From Multiple Sensors
The System Battle Management Performance Would Benefit Greatly 
From Further Development of the All the Fusion Processing 
Functions With Special Attention to the Interactions Between 
Functions     
Additional Algorithm Development Is Needed for the More 
Challenging Conditions and for Graceful Degradation
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Abstract 
Multiple-sensor data fusion offers the opportunity for substantial improvement in functional performance 

compared to single sensor processing.  Data fusion processing, however, is typically substantially more 

complex than processing with data from a single sensor.  Consequently, data fusion processing typically 

involves more processing functions than processing with data from a single sensor.  Accordingly, the fusion 

tracker function may be required to provide more and better information to the other fusion-level (network-

level) functions.  The fusion track function may also be required to receive and act on more information 

from the other fusion functions than the information typically received by a single sensor tracker.  The 

types of information that the fusion tracker function is expected to provide to the other fusion functions as 

well as the types of information provided by the other fusion functions that the fusion tracking function is 

expected to utilize are the subject of this presentation. 

Keywords:  Sensor Data Fusion, Target Tracking, Fusion Tracker, Data Fusion Functions, Measurement 

Fusion, Covariance Compensation, Network Centric Tracking, and Hybrid Fusion. 

Presentation Summary 

Fusion target tracking and classification problems can be broadly categorized into four generic types [1], as 

follows:  

 1.  Sensor tracking of a single (bright) target  

 2.  Tracking of large targets 

 3.  Tracking of medium sized targets  

 4.  Tracking of small targets. 

Note that the size indicated in this list is in terms of the number of resolution elements or pixels of a target.  

Typically, a small target is less than 12 pixels (resolution elements) in width.  The algorithms used in the 

signal, image, and track processing for each of these types of problems differ substantially.  Since each type 

of tracking problem poses different algorithm development issues, this paper and the accompanying Power 

Point presentation concentrate on only one type, namely, fusion tracking of small targets using multiple 

target tracking methods.  Multiple target tracking is a relatively new field.  The first book dedicated 

exclusively to multiple target tracking was published in 1986 [2] and a number of recent books are 

available, such as [3, 4]. 

Target tracking exhibits properties and unexpected results that are not common to most statistical 

estimation tasks.  One of the major causes of unexpected results is that tracking involves random variables 

from both continuous sample space and discrete sample space.  Accordingly, using a high fidelity 

simulation is a vital step in algorithm development [1].  These issues need to be considered when 

developing a fusion system and addressing the exchange of information between the fusion tracker and the 

other fusion functions. 

A data-fusion processing system could be fairly simple or sophisticated and complex or anywhere in 

between depending on the specifics of application and the fusion system requirements.  The fusion 

processing design depends on the requirements; the characteristics, limitations, and locations of the sensors, 

processors, threat, communications, and operating conditions; the location of the users; and the state of the 

art of fusion processing.  Thus the type of algorithm architecture and functional decomposition of a data 

fusion processing system for one application could be very different from another application and thus, the 

exchange of information between the fusion tracker function and other fusion functions could be very 
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different.  These issues are summarized as background for the discussion of the specifics of the type of 

information exchanged between the fusion tracker function and the other fusion functions.  The 

introduction also describes the type of fusion system assumed so that the presentation can be simplified.  

Note also that the fusion tracker function could be simply a single tracker if the fusion processing is 

centralized and could involve multiple trackers if fusion processing is distributed.  Since the term state-of-
the-art is used in the presentation, a clarification of what is meant here by the state-of-the-art is included in 

the Introduction, see [5]. 

Sensor data fusion (and especially network centric processing) is accompanied by a variety of fusion-level 

functions.  Most of those fusion-level functions interface with the fusion tracker either directly or 

indirectly, e.g., by way of the database that stores the target tracks and related data.  Thus, the fusion 

tracker needs to accept inputs from these other functions and provide information for their use, as needed.  

Table 1 lists thirteen other fusion-level major functions that might interact with the fusion tracker.  Note in 

the table that the interaction between the fusion tracker and most of the other fusion-level major functions 

is two ways, i.e., both to the tracker and from the tracker. 

As an example of the envisioned interaction from and to the fusion tracker, consider the exchange of 

information between the Fusion Tracker and the Manage Processing function [5].  When the fusion tracker 

receives a frame of data, it might provide the Manage Processing function (Function 4 of Table 1) on the 

local platform with the amount of computer resources desired to process that frame of data; the other 

fusion-level functions could do so also.  Based on all these estimates, the Manage Processing function 

would compare the processing resources desired to the resources available and then provide a processing 

resource budget to each of the fusion-level functions.  The fusion tracker would then select algorithms and 

parameters that will permit its processing of the frame of data within the computer resource budget.  This 

approach assumes one of the fusion trackers goals or requirements is graceful degradation and could be 

used in the event of processor faults or a damaged processor.  A separate slide addresses covariance 

consistency [6] because the performance of most fusion functions would be degraded by inconsistent 

covariances.  Another example, is the request by the Tracking Function to the Sensor Resource Manager to 

obtain measurements from specific sensor regions (or with specific characteristics) to facilitate sensor bias 

estimation or adaptive tracking [7]. 

The exchange of information between the fusion tracker and the other functions are also discussed.  There 

are no doubt additional efforts needed beyond this list to ensure that the fusion tracker effectively interacts 

with the other major functions of the fusion-level.  Furthermore, different systems will have specific needs 

that should be addressed based on the unique character of their operating conditions, sensors, and targets.  
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Sensor, Platform, and 
Network Level Functions

Higher level tasks are distilled from the network level, through the platform level, to the individual sensors.  
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Sensor and Network Level Functions
Without a Platform Tracker

Numerica - 4Numerica

Some Interactions

• Platform/Network Tracker
• Platform/Network Resource Manager
• Communications Resource Manager
• CID/Discrimination
• Situation Assessment/Awareness 

• Resource Manager
• Weapon-Target Assignment (Battle Management)
• Kill Assessment
• CID/Discrimination
• Situation Assessment/Awareness
• Sensor vs. Platform vs. Network
• Operator in the Loop

• Network Tracker and Resource Manager also interact 
with remote platforms.

• This presentation addresses some aspects of the 
Tracker and Communications/Resource Manager
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Outline

• Ambiguity Assessment in Support of Fusion

• Distributed Resource Management

Numerica - 6Numerica

AMBIGUITY ASSESSMENT IN 
SUPPORT OF FUSION
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State Estimate Uncertainty and 
Association Ambiguity in MTT

• Most Tracking System Produce a State and Estimate of the 
Error (uncertainty) in the Form of a Covariance Matrix.
• Uncertainty of the state is required for fusion and association as well 

as other system functions such as CID, discrimination, weapon-to-
target assignment, resource management, maneuver and anomaly 
detection.

• An accurate characterization of the uncertainty, e.g., covariance 
consistency, is essential. 

• New Requirement: Modern Tracking Systems should also 
produce an estimate of ambiguity, i.e., association 
uncertainty, in terms of the Probability of Association or 
some other measure.
• For track-to-track (e.g., MSI), the decision to fuse or select source 

tracks to produce system/global depends on the ambiguity in the 
association process (and consistency of the covariances).

• For measurement based tracking (e.g., CT), the requirement is to 
identify relatively pure track segments or to provide an estimate of 
the Probability of the Association to downstream processing.  

• Uncertainty and ambiguity in tracking should be
• Assessed and managed and
• Supplied to other system components or computed jointly with other 

system components.
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Example of a
Track Matching System

R2 groups

Track-to-Track 
Matching

Node

1. System tracks:
a.  (x,P)
b.  List of source track 
correlations

2. Additional info, such as 
source-to-system 
correlation probabilities 

Sensor 1 Tracker 1

Sensor 2 Tracker 2

Sensor 3 Tracker 3

Sensor 4 Tracker 4

Comm. 
Manager

Comm. 
Manager

Source
Tracks

Source
Tracks

Output

Tracker 5 Sensor 5

Source
Tracks
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Challenges of 
Track Matching Systems

• Challenges related to fusion (i.e., state estimation):
• Statistical correlation of source-level track updates

• Common process noise
• Common prior

• Out-of-order measurements due to communication delays and to 
different processing requirements on different platforms.

• Standard Kalman filter-related difficulties
• Nonlinear, non-Gaussian environments
• Target maneuvers

• Challenges related to correlation (i.e., track-to-track data 
association):
• Bandwidth constraints on communication

• Low update rates
• Missing or partial covariance matrices
• R2 conventions (platforms only report some of their tracks)

• Matching a few objects to many objects
• Sensors of Different Resolution
• Coverage Gaps

• Sensor Biases
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• Exact computation of association probabilities 
requires enumeration of entire probability space.

• To be tractable, inexact methods are needed: 
Ambiguity assessment.

• Ambiguity assessment methods must meet 
two criteria: accuracy and efficiency.

Hypothesis 1

A1 ↔ B1

A3 ↔ B2

Hypothesis 2

A2 ↔ B1

A3 ↔ B2
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• For a challenging scenario, there can 
be many data association hypotheses 
with similar likelihoods:

• In these cases, there may be many 
“good” association hypotheses.

• Ambiguity assessment provides 
information on certainty of individual 
association decisions.

Ambiguity Assessment
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Methods for Ambiguity Assessment

• Goal: Approximate the Probability of Association of 
measurement to a track or source track to system track.

• Current Methods
• SHT

• K-Best, MCMC, or IS  for Two Dimensional Assignment Problem
• Hybrid Methods 

• MHT via MDA
• K-Best Solutions of MDA via A*-Search for MHT
• Sequential K-Best/MCMC for Relaxation Procedure 

• Other, e.g., local measures.
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An Important Feature of 
Ambiguity Assessment

Provide a “third outcome” ambiguous correlations are deferred until 
uncertainty is resolved and no fusion is performed.
• Deferred correlations are penalized as missed correlations.
• The number of incorrect correlations should always be relatively small.
• In difficult (i.e., ambiguous) scenarios, missed correlations will increase.

Correct

Incorrect

0

1

Difficulty

Typical Correlation Algorithm

Correct

Incorrect

Misses

0

1

Difficulty

Algorithm with Ambiguity
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Applications

• Track-to-Track
• A system track is represented by fusion or selection depending 

on ambiguity.
• Ambiguity should be carried forward to other fusion functions.

• Measurement to Track
• A goal is often to identify track segments with relatively pure 

segments.
• Ambiguity should be carried forward to other fusion functions.

• Many downstream functions such as CID, 
discrimination,  and weapon-target assignment require 
assessment and management of the uncertainty and 
ambiguity in the system for better decisions. 

• Computing the “best” solution with no assessment of 
its uncertainty/ambiguity at each function often yields 
the “wrong” answer.
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A Side Comment on  
MHT Tracking Methods

• Current and Future MHTs Must be Adaptive
• If association process is unambiguous, use simple association 

methods (NN, GNN)
• If association process is ambiguous, delay decisions to resolve 

ambiguity up to limits of memory and time budgets. 
• Rather than use a sliding window, use ambiguity restricted by the 

available memory and time budgets.

• Such an MHT requires more efficient determination of 
ambiguity.
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RESOURCE MANAGEMENT
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Sensor and Network Level Functions
Without a Platform Tracker
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Resource Management in
a Decentralized Environment

• Sensor Resource Management
• Sensor Placement:  Where should the sensors or platforms be 

placed in order to maximize the utility of diversity of information or 
to provide coverage?

• Platform Routing:  What paths should the platforms pursue in order 
to maximize the utility of information.

• Assignment of Sensors to Network Tasks: which sensors should 
gather what information or perform what tasks for the network of 
platforms.

• Uncertainty/ambiguity in tracking and CRM should be utilized in SRM
• Communications Resource Management

• CRM deals with what information should be sent over a band-limited 
communications network in order to optimize some utility, value of 
the information, or reward and addresses the bandwidths.

• CRM also considers the routing of the information.
• Uncertainty/ambiguity in tracking and SRM should be utilized in CRM 

• Sensor resource management should be considered in 
conjunction with communications resource management.
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SIAP Across a Network of Platform

• Coordinating these different objectives on a single 
platform is a technical challenge.

• Coordinating these different objectives on multiple 
platforms is a technical and political challenge.

• SIAP Across a Network
• When each platform receives all the data from all other platforms, 

achieving SIAP is a challenge, especially for MHT tracking.
• When there is insufficient bandwidth or latency, then SIAP 

suffers.
• We use another fusion function called Shadow tracker to understand the 

state of tracks based on information common to the network. 
• CRM or Data Prioritizer operates on the microsecond level and puts 

information on the network based on a priority cue, for example.
• Resource Management coordinates which sensor(s) is to perform what 

tasks over multiple time periods into the future.  
• Under extremely heavy network loads in which one can only send 10%-

20% of the available data, achieving SIAP can be a challenge.
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Conclusion

• Assessment and Management of Uncertainty and 
Ambiguity in Track Managers is essential for 
performance in various fusion and other components. 

• Coordinating information across a network remains a 
significant technical and political challenge, i.e., much 
fun remains. 
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Some Issues in Multiple Target Tracking and Resource
Management

Aubrey B. Poorea

aNumerica Corporation, 4850 Hahns Peak Drive, Suite 200, Loveland CO, 80538

ABSTRACT

The interactions between different fusion systems such as tracking, resource management, combat identification
or discrimination, situation assessment, registration, and battle management are complex ones that must be
treated at the sensor, platform, and network levels in order to achieve overall system performance. This work and
presentation focus on a small subset of these interactions, namely the assessment and management of uncertainty
and ambiguity in the tracking component and the interactions with resource management. Most tracking systems
produce a state estimate of an object and an uncertainty in the estimate in the form of a covariance matrix.
The corresponding uncertainty in the association process is called ambiguity. This is a new requirement for
tracking systems and is essential to support downstream processing such as CID or discrimination and situation
assessment. This presentation presents some of the salient features of ambiguity and methods for evaluating it.
In addition, resource management must coordinate the tasking throughout the system with interactions between
between all system components, especially tracking, as well coordination between sensor, platform, and network
levels.

Keywords: ambiguity assessment and management, resource management

1. INTRODUCTION

The interactions between different fusion systems such as tracking, resource management, combat identification,
situation assessment, and battle management as illustrated in Figure? are complex ones that must be treated
at the sensor, platform, and network levels in order to achieve overall system performance. This work and
presentation focus on a small subset of these interactions, namely the assessment and management of uncertainty
and ambiguity in the tracking component and the interactions with resource management. Most tracking systems
produce a state estimate of an object and an uncertainty in the estimation process in the form of a covariance
matrix. Consistency of this covariance matrix is a key component to ensuring tracking robustness in the system.
The corresponding uncertainty in the association process is called ambiguity and can be addressed through the
probability of association and is the major topic of the second section. In addition, tracking must interact with
resource management including both sensor and communication management. At the network level, both sensor
tasking must consider the available bandwidth as well as the individual sensor resources available to the network
as outlined in the third section.

2. UNCERTAINTY AND AMBIGUITY ASSESSMENT AND MANAGEMENT.

Fusion is sometimes loosely defined as combining two or more sources of information to arrive at a better un-
derstanding of the that which you are trying to understand. For most tracking systems, the goal is to combine
multiple sources of information to arrive at an improved state of the object. In addition, most tracking sys-
tems produce a state and estimate of the error (uncertainty) in the form of a covariance matrix. Uncertainty
of the state is required for fusion and association as well as other many other system functions such as CID,
discrimination, weapon-to-target assignment, resource management, maneuver and anomaly detection. An accu-
rate characterization of this uncertainty, normally called covariance consistency, is essential for these functions.
Drummond1 presents both metrics for and causes for a lack of this uncertainty.

Further author information: (Send correspondence to Aubrey Poore)
E-mail: aubrey.poore@numerica.us, Telephone: 1 970 461 2000
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Figure 1. Sensor, Platform, Network Functions

A prerequisite to the fusion function is that of determining what sources go together so that the information
can be combined. This step is normally called association or data association. The term “correlation” is often
used for track-to-track association. The uncertainty in the association process, called ambiguity, is also critical
to many system functions including the decision to select or fuse track states for track matching systems or the
identification of pure track segments used by identification or discrimination functions in case of measurement
based systems. The new requirement is that tracking systems should also produce an estimate of ambiguity which
can be measured by the probability of association. Methods for computing the probability of association can be
based on K-Best solutions of a two dimensional assignment problem, Markov chain monte carlo (MCMC), and
importance sampling (IS) methods as in earlier work of Gadaleta, Herman, Miller, Obermeyer, Slocumb, Poore,
and Levedahl2 and more recent papers of Kragel and Herman3,4 for single hypothesis tracking. For MHT, one
can generate the K-Best solutions of the NP-hard multidimensional assignment problems using A*-search within
a branch and bound, or sequential K-Best within a Lagrangian relaxation procedure. Better approximation
schemes are needed for MHT.

As an example of uncertainty and ambiguity, consider the case of a track matching system. The challenges
related to fusion (i.e., state estimation) include statistical correlation of source-level track updates from com-
mon process noise or common priors, out-of-order measurements due to communication delays and to different
processing requirements on different platforms, and the standard estimation difficulties including nonlinear and
non-Gaussian environments and target maneuvers. Challenges related to correlation (i.e., track-to-track data
association) include bandwidth constraints on communications, low update rates, missing or partial covariance
matrices, R2 conventions (platforms only report some of their tracks), matching a few objects to many objects
due to sensors of different resolutions, coverage gaps and sensor biases.

Ambiguity also provides a method for making MHT more adaptive. If the association process is unambiguous,
one should use simple association methods such as global nearest neighbor or even nearest neighbor methods. If
the association process is ambiguous, one can delay decisions to resolve ambiguity up to limits of memory and
time budgets. Thus, rather than use a sliding window, use ambiguity restricted by the available memory and
time budgets. Such an MHT requires more efficient determination of ambiguity.

3. RESOURCE MANAGEMENT

We divide resource management into two components, normally called sensor resource management and commu-
nications resource management. The former can occur at several levels, namely network, platform, and sensor
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levels with each interacting with the other. In particular under the sensor resource management, one can consider
several functions such as the following.

• Sensor Placement: Where should the sensors or platforms be placed in order to maximize the utility of
diversity of information or to provide coverage?

• Platform Routing: What paths should the platforms pursue in order to maximize the utility of information.

• Assignment of Sensors to Tasks: Which sensors should perform which tasks at the sensor, platform, and
network levels?

Communications resource management on the other hand must consider

• What information should be sent over a band-limited communications network in order to optimize some
utility, value of the information, or reward and addresses the bandwidths;

• Routing of the information on the network.

Network level sensor and communications resource management should be coordinated. In particular, sensors
should not be tasked beyond their resources just because communications bandwidth is available nor should they
be asked to perform a task if bandwidth is not available to to transmit the information. While network sensor
management5 plan the sensor to task assignments one (myopic) or several (non-myopic) time periods into the
future while taking bandwidth constraints into account. The communications resource manager on the other
hand coordinates and routes the transformation over the the network at the micro second level. In both cases,
uncertainty and ambiguity in conjunction with that of tracking should be assessed and managed.

4. CONCLUSIONS

Most tracking systems produce a state estimate of the object and a covariance to represent the uncertainty in the
state. In addition, uncertainty in the association process, called ambiguity, needs to be part of this uncertainty.
Both uncertainty in the state estimate and the ambiguity in the association process needs to be assessed and
managed throughout the system to support better fusion and decision making processes.

With respect to resource management, the overall objective at the network level is to operate the platforms
in a networked system in an integrated and efficient fashion by managing the resources across the network. The
goal is to coordinate in real-time the operation of the sensors in such a way that those best-equipped for certain
missions and have the resources to accomplish the mission should perform those missions for the entire network,
while other sensors fill in the gaps with their capabilities.
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Trust is Important in Building Real Fusion Systems
• Users will only use a fusion system if they can “trust” its output, especially 

when output is used to make important decisions
• Many research fusion systems are not used because they are not trusted
• Definitions of “trust” depend on specific communities

• Automation/supervisory control: 
Trust = Predictability + Dependability + Faith + Competence + Responsibility + 
Reliability

• Network security: 
Trust = Secure and reliable data communication

• Human organizations:
Trust = Belief in future actions of others

• A “trusted” fusion system is one that
• Does not just produce accurate results from good data
• Should also assess confidence on results
• Is honest about its assessment  

Non-Technical Data - Releasable to Foreign Persons 
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Example - Significant Gap Exists Between 
Research and Practice in GMTI Tracking

• Several sophisticated multiple hypothesis GMTI trackers have been 
developed

• However, most operational GMTI platforms still use fairly simple trackers
• Furthermore, most GMTI analysts do not use sophisticated trackers 

because they
• Cannot use trackers effectively – lack of trust from experience/observation
• Do not have confidence in results – lack of trust from experience/observation
• Are told that fancy trackers don’t work – lack of trust from reputation

• Users need trackers that they can trust

Research
- Multiple hypothesis tracking
- Interacting multiple models
- Particle filters
- PHD

Practice
- Single hypothesis
- Simple filters

Non-Technical Data - Releasable to Foreign Persons 
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Trust in Fusion System Depends on Trust in Components

• Trusted data source
• Produces expected data
• Represents data quality

• Trusted communication
• Insures timeliness and integrity of data
• Transmits confidence estimates

• Trusted fusion processing
• Applies fusion approach suitable for 

problem
• Characterizes confidence in results

• Trusted human machine interface
• Displays results understandable to users
• Presents confidence in results 

Data 
Source

Communication

Fusion 
Processing

Human
Machine
Interface

Fusion System

Non-Technical Data - Releasable to Foreign Persons 
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Confidence Assessment is Easier for 
Physical Sensors Than Human Sources

• Physical sensors
• Modeling is easier because they are engineered from components
• Accuracy and reliability can be represented statistically
• Performance can be verified by tests

• Human sources
• Perception process varies from person to person
• Perceptual bias is sensitive to context
• Performance is affected by training and workload
• Natural language output is imprecise and subject to different interpretation
• Modeling and verification is difficult
• Human sources may intentionally lie

Non-Technical Data - Releasable to Foreign Persons 
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Confidence Assessment for Upstream 
Trackers Could be Better

• Most trackers now produce error 
covariances for state estimates -
covariance consistency recognized as 
important problem

• Some trackers produce estimates on 
uncompensated residual sensor biases

• Few trackers assess data association 
performance

• Lack standard association confidence 
measure similar to error covariance

• Lack efficient algorithms to compute 
confidence

• Track fuser does not know how much to 
trust input tracks when confidence is not 
represented

x x x x x x x x x x

x x x x x x x x x x

x x
x x

x
x

x
x

x x
x x

Input Data with Different Ambiguity

Same Sets of Tracks from Tracker

Non-Technical Data - Releasable to Foreign Persons 
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Communication Should Maintain 
Continuity of Trusted Information 

• Information pedigree should be communicated to maintain trust pedigree
• Source of information
• Confidence in source

• Information received at processing node should be true copy of what was 
transmitted by upstream sources

• Covariances in addition to state estimates – not communicated in some data 
links

• Track confidence in addition to tracks – almost never communicated
• Dropped communication should be characterized

• No report does not affect fusion results
• Missing report has useful information 

Non-Technical Data - Releasable to Foreign Persons 
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Fusion Processing Should Assess 
Confidence on Results

• Sophisticated fusion systems generate results 
even in highly ambiguous situations

• Best hypothesis from MHT may only be slightly 
better than other hypotheses with high probability of 
being wrong

• Frequent hypothesis hopping
• Trusted fusion processing should only produce 

results that are credible
• Don’t try too hard to produce good tracks when 

situation is ambiguous
• Assess confidence when required to produce tracks

• Trusted fusion system should never let user 
doubt results

Hypothesis sorted by probability

Hypothesis sorted by probability

1.0

1.0

Posterior probability

1 2 3 4 5

1 2 3 4 5 6 7

Posterior probability

High confidence

Low confidence

Non-Technical Data - Releasable to Foreign Persons 
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Fusion Systems Should Only be Used When 
Assumptions are Valid

• Fusion system will perform poorly when underlying assumptions are invalid
• Developers may oversell capability of system
• Users may not know underlying assumptions

• Fusion system should be explicit about assumptions
• Data source, e.g., observation errors, false alarm rate, detection probability
• Targets, e.g., types, dynamics
• Context, e.g., urban or rural environment,  

• Fusion system should have self assessment capability
• Know when assumptions are violated
• Qualify results when necessary

Non-Technical Data - Releasable to Foreign Persons 
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Human Computer Interface Should Display 
Understandable and High-Confidence Results

• Understandable results develop trust
• Single hypothesis results from simple trackers are easier to understand than 

multiple hypotheses
• Black box solutions have to generate trust from positive user experience or 

reputation
• Drill down capability to examine pedigree of evidence enhances understanding

• Low confidence results destroy trust
• Should display pure segments (with no association ambiguity) as default
• Do not display best single hypothesis unless it has high confidence
• Be conservative about what to display - no result is better than wrong result

Non-Technical Data - Releasable to Foreign Persons 
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Conclusions

• Trust in fusion system is essential for transition to real world
• Overall trust depends on trust in individual components

• Data source
• Communication
• Fusion processing
• Human computer interface

• Developing trust in fusion systems requires advances in
• Representing and assessing confidence in data sources, especially human 

sources and trackers
• Communicating confidence over fusion chain
• Assessing confidence and exposing assumptions in fusion processing
• Presenting understandable and high confidence results to users

Non-Technical Data - Releasable to Foreign Persons 
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Developing Trust in Fusion Systems 

Position Paper for SPIE Panel on “Real World Issues and Challenges in the Integration of Fusion 
Functions”

Chee-Yee Chong*
BAE Systems, 5050 El Camino Real, Suite 200, Los Altos, CA 94022 

ABSTRACT 

Users will only use a fusion system if they can “trust” its output. In fact, many research fusion systems never get used 
because they are not trusted. There are many different definitions of “trust” depending on the particular communities, 
e.g., computer security and social networks. An operational definition of “trust” for a fusion system is its reliability or 
confidence in its assessment of accuracy. A fusion system discovers and collects data from sources, transforms data to 
information to knowledge, and disseminates knowledge to provide understanding for users. The trust in the system is 
composed from trust in the data sources, trust in the process that converts the data to information and knowledge, and 
trust in dissemination as human understanding.  

Keywords: fusion systems, trust, confidence 

1. INTRODUCTION
Trust is important in building real world fusion systems. Users will only use a fusion system if they can “trust” its 
output, especially when the output is used to make important decisions. Many research fusion systems are not used 
because they are not trusted. The definitions of “trust” depend on the specific communities. In automation and 
supervisory control, trust is predictability + dependability + faith + competence + responsibility + reliability [1]. In 
network security, trust is secure and reliable data communication [2]. In human organizations, trust is belief or faith in 
future actions of others [3]. For fusion systems, we use the following operational definition. A “trusted” fusion system is 
one that does not just produce accurate results from good data because that is expected. It should also assess the 
confidence on the results and is honest about its assessment. 

An example of trust or lack of trust in fusion systems can be found in ground moving target indicator (GMTI) tracking. 
Currently, significant gap exists between research and practice in GMTI tracking. Several sophisticated multiple 
hypothesis GMTI trackers have been developed over the last decade. However, most operational GMTI platforms still 
use fairly simple trackers. Furthermore, most GMTI analysts do not use sophisticated trackers. They cannot develop trust 
from their own experience or observation because the trackers are often too difficult to use or produce results that do not 
instill confidence. There is also lack of trust from reputation because analysts are often told that fancy trackers do not 
work. 

2. TRUST IN FUSION SYSTEM DEPENDS ON TRUST IN COMPONENTS 
At a high level, a fusion system consists of the components shown in Figure 1. Trust in the fusion system depends on 
trust in the components. A trusted data source produces expected data and represents data quality. Trusted 
communication insures timeliness and integrity of communicated data and commuincates confidence on the estimates. 
Trusted fusion processing applies a fusion approach that is suitable for the problem and characterizes its confidence in 
the results. Trusted human machine interface displays results that are understandable to users and presents confidence in 
the results. 

*chee.chong@baesystems.com, cychong@ieee.org; phone 1 650-210-8822; fax 1 650-210-8824
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Figure 1: Fusion system components Figure 2: Different inputs result in 
similar outputs 

Figure 3: Hypothesis probabilities 

Confidence assessment is easier for physical sensors than human sources. Physical sensors are easier to model because 
they are engineered from components. Their accuracy and reliability can usually be represented statistically and 
performance can be verified by tests. Human sources are difficult to model because human perception process varies 
from person to person. Human perceptual bias is sensitive to context and performance is affected by training and 
workload. Further more, natural language output is imprecise and subject to different interpretation. In addition, human 
sources may intentionally lie. 

Many fusion systems process outputs from trackers. So far, confidence assessment for upstream trackers is not as good 
as that for sensors. Most trackers now produce error covariances for state estimates and covariance consistency is 
recognized as an important problem [4]. Some trackers also produce estimates on uncompensated residual sensor biases. 
However, few trackers assess data association performance [5, 6]. This is important for fusion because it needs to know 
how much to trust the tracks from the trackers. Figure 2 shows that a tracker will produce similar results even though the 
tracks from data with high sampling rate should be trusted more than the ones from data with low sampling rate. We lack 
standard association confidence measure similar to error covariance and efficient algorithms to compute confidence. It is 
hard for the track fuser to do its job when it does not know how much to trust the input tracks. 

Communication should maintain continuity of trusted information. Information pedigree should be communicated to 
maintain trust pedigree. This should include the source of information and the confidence in the source. The information 
received at the processing node should be a true copy of what was transmitted by the upstream sources. The covariances 
should be communicated in addition to state estimates. This is not done in some data links. Track confidence should be 
communicated in addition to tracks but this is almost never done. Dropped communication should be characterized 
because a missing report conveys useful information. 

Fusion processing should assess its confidence on the results. Sophisticated fusion systems generate results even in 
highly ambiguous situations. However, the best hypothesis from multiple hypothesis tracking (MHT) may only be 
slightly better than the other hypotheses. Then the best hypothesis has a high probability of being wrong and frequent 
hypothesis hopping may result. Trusted fusion processing should only produce results that are credible. It should not try 
too hard to produce good tracks when the situation is ambiguous. It should assess confidence when required to produce 
tracks.

Fusion systems should only be used when assumptions are valid. A fusion system will perform poorly when the 
underlying assumptions are invalid. This may be due to several reasons. Developers may oversell the capability of the 
system and users may not know the underlying assumptions. Thus, a fusion system should be explicit about its 
assumptions. These include observation errors, false alarm rate, detection probability, etc. for data sources, types and 
dynamics for targets, and context such as urban or rural environment. Further more, a fusion system should have self 
assessment capability. It should know when assumptions are violated and qualify the results when necessary. 

Human computer interface should display understandable and high-confidence results because understandable results 
develop trust. In general, single hypothesis results from simple trackers are easier to understand than multiple 
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hypotheses. Black box solutions have to generate trust from positive user experience or reputation. Drill down capability 
to examine pedigree of evidence also enhances understanding. Producing low confidence results on a regular basis 
destroys trust. Thus it is better to display pure segments (with no association ambiguity) as default. The best single 
hypothesis should not be displayed unless it has high confidence. Finally, it is better to be conservative about what to 
display because no result is better than wrong result. 

3. SUMMARY
Trust in fusion system is essential for transition to the real world. Overall trust depends on the trust in individual 
components that form the fusion system. Developing trust in fusion systems requires advances in representing and 
assessing confidence in data sources, especially human sources and trackers, communicating confidence over fusion 
chain, assessing confidence and exposing assumptions in fusion processing, and presenting understandable and high 
confidence results to users. 
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A Non-Exhaustive List of Fusion Functions
• Target detection
• Target localization
• Target tracking
• Target identification
• Track management
• Maneuvering targets
• Closely-spaced targets
• Unresolved Targets 
• Target clusters
• Target birth & death
• Target tactical priority
• Coordinated target motion
• Data association
• Attribute processing
• Feature processing
• Natural-language processing
• Rule-based processing
• Sensor cueing
• Sensor scheduling
• Sensor search

• Probability of detection 
• Sensor field of view 
• Internal sensor noise 
• Sensor slew rate 
• Sensor platform dynamics 
• Search 
• False alarms 
• Dynamic clutter 
• Clutter mitigation 
• Conflicting evidence 
• Obscuration 
• Terrain constraints 
• Communications dropouts 
• Multisource fusion 
• Biases 
• Unreliable sources
• Data latency 
• Weather
• Communications latency 
• Ad hoc comms networks
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Top-Down versus Bottom-Up Multitarget Fusion

usual “bottom-up” approach 
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Top-Down Statistics of Multisensor-Multitarget Systems
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Systematic-Bayes Multitarget Modeling & Approximation 
formal multitarget

statistical model of the
motions of all targets

1.
formal multisensor-multitarget  
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ACTUAL INFORMATION SOUCES
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5.
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multitarget calculus

p.g.fl. multitarget Bayes filter
(less complex formulas)

Gk|k[h|Z(k)]
6.
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PHD & CPHD filters
(approximate multitarget detection & tracking)
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8.

i.i.d. cluster process approximation

approximate p.g.fl. multitarget Bayes filter
(algebraically tractable formulas)
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7.

The Finite-Set Statistics Research Program
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functions

mission
goals

principled
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sensor
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representation
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group target
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Unified Statistical Integration of Fusion Functions
• Target detection  
• Target localization  
• Target tracking  
• Target identification 
• Track management 
• Maneuvering targets 
• Closely-spaced targets 
• Unresolved Targets 
• Target clusters 
• Target birth & death 
• Target tactical priority 
• Coordinated target motion 
• Data association N/A
• Attribute processing 
• Feature processing 
• Language processing 
• Rule-based processing 
• Sensor cueing 
• Sensor scheduling 
• Sensor search 

• Probability of detection  
• Sensor field of view 
• Internal sensor noise 
• Sensor slew rate 
• Sensor platform dynamics 
• Search 
• False alarms 
• Dynamic clutter 
• Clutter mitigation 
• Conflicting evidence 
• Obscuration 
• Terrain constraints 
• Communications dropouts 
• Multisource fusion 
• Biases ???
• Unreliable sources ???
• Data latency ??? 
• Weather ???
• Communications latency ???
• Ad hoc comms networks ???

Thank you!
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RealReal--World Issues and ChallengesWorld Issues and Challenges
in the Integration of Fusion Functionsin the Integration of Fusion Functions

2

Fusion for the Real-World

What are the issues (or the challenges)?

lix
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Real-World Fusion and Integration

What are the Challenges ?

1. The real-world
– Unknown environment
– Unknown sensor/data characteristics
– Time-varying resources
– …

2. The integration
– Combine different stages of the processing chain
– Decide how/what to share across the stages
– Account for effects of processing in each stage
– …

4

Unknown Environment (Before)

lx
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Estimate the spatio-temporally varying clutter levels 
online

Possible to develop sophisticated clutter estimation 
algorithms

Seamlessly integrate clutter estimation with tracking

Difficult to “retrofit” new algorithms to standard 
trackers like the MHT/MFA/JPDA 

Unknown & Varying Clutter

6

Unknown Environment (After)

lxi
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Need to know sensor/tracker accuracies, biases, etc., 
accurately for effective fusion

Many real-world tracking systems don’t provide 
accuracies!

We don’t have the accuracies for legacy sensors

Often real data don’t make sense (even to the 
providers)

Real-world sensor data/tracker output may be 
counter-intuitive and fusion counterproductive

Unknown Sensor/Data Characteristics

8

Some data issues may be inherent to sensor 
systems

Estimate sensor accuracies, biases, etc., 
online (can degrade overall performance) 
before tracking and fusion

Understand the sensor, modify processing 
and quantify output so as to improve 
tracking/fusion results 

Unknown Sensor/Data Characteristics (2)

lxii
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Sensor, bandwidth and computational resources are 
limited (and time-varying)

Integrate tracking/fusion with sensor management 
(e.g., waveform design, sensor placement/selection)

Need short-term (myopic) and long-term (open-loop) 
resource allocation

There may be conflicting criteria (=> multi-objective 
sensor management)

Resource Management

10

Resource Management (2)

lxiii
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Need to decide what/when to transmit across 
platforms

Account for the effect of communication strategy on 
accuracies, correlations, etc.

Need to work with heterogeneous sensor data and 
tracker output (e.g., estimates/covariances vs. 
multiple hypothesis output vs. particles)

How to fuse outputs from MHT trackers and particle 
(-like) filters

Communication Issues

12

Ultimately, need to use lower-level 
tracking/fusion results to infer higher level 
unknown (e.g., class, intent)

How to classify targets using track estimates 
(and feature information) and use 
classification to improve tracking in an 
unknown environment

How to predict destination (and intent) with 
tracking and fusion

Feeding Higher Level Fusion

lxiv
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How to integrate all these functions (even at 
low levels from signal processing to track-to-
track fusion) or across fusion levels

How to exchange data among disparate (and 
possibly incompatible) algorithms at different 
stages

How to optimize performance at different 
stages of processing

Integration

14

Let us not forget performance meaningful evaluation!

How to quantify performance of a fusion system with 
different stages of performance

Is there a single (or a mixture of) performance 
metric(s) that can characterize the system?

What are the trade-offs among different options for 
architecture, processing, communication, etc.? 

Performance Evaluation

lxv
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