In this paper we discuss the main characteristics (that we consider to be essential) for the design of an efficient optimizer in the context of highly non-convex functions. We consider a specific model known as Marked Point Process (MPP). Given that the probability density is multimodal, and given the size of the configuration space, an exploration phase is essential at the beginning of the algorithm. Next, the fine details of the density function should be discovered. We propose efficient kernels to efficiently explore the different modes of the density, and other kernels to discover the details of each mode. We study the algorithm theoretically to express convergence speeds and to select its best parameters. We also present a simple and generic method to parallelize the optimization of a specific class of MPP models. We validate our ideas first on synthetic data of configurations of different sizes to prove the efficiency of the proposed kernels. Finally we present results on three different applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.