Lasercom terminals often scan an area of uncertainty during acquisition with a wide-divergence beacon beam. Once the terminal has established cooperative tracking with the remote terminal, a narrow divergence beam is used for communication. A mechanism that enables continuous beam divergence control can provide significant size, weight, and power (SWaP) benefits to the terminal. First, the acquisition and the communication beams can be launched from the same fiber so only a single high-power optical amplifier is required. Second, by providing mid-divergences, it eases the remote terminal’s transition from the acquisition phase to the communication phase. This paper describes a mechanism that provides gradual, progressive adjustment of far-field beam divergence, from wide divergence (> 300 μrad FWHM) through collimated condition (38 μrad FWHM) and that works over a range of wavelengths. The mechanism is comprised of a variable-thickness optical element, formed by a pair of opposing wedges that is placed between the launch fiber and the collimating lens. Variations in divergence with no beam blockage are created by laterally translating one wedge relative to a fixed wedge. Divergence is continuously adjustable within the thickness range, allowing for a coordinated transition of divergence, wavelength, and beam power. Measurements of this low-loss, low-wavefront error assembly show that boresight error during divergence transition is maintained to a fraction of the communication beamwidth over wavelength and optical power ranges.
Over the years, the author has familiarized himself with far too many of the classic methods for turning a single optical element into any number of smaller pieces. In the vast majority of these cases the application of gravity was the destructive element. Resting a large lens on a yet unbeveled edge to produce the classic “clamshell” is a well known example. Another ever popular technique using gravity assist is trying to carefully pull one’s fingers out from under an optical element when placing it on a surface plate.
Conference Committee Involvement (3)
An Optical Believe It or Not: Key Lessons Learned IV
10 August 2015 | San Diego, California, United States
An Optical Believe It or Not: Key Lessons Learned III
18 August 2014 | San Diego, California, United States
An Optical Believe It or Not: Key Lessons Learned II
2 August 2010 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.