In this work, the emission efficiency and spectral shift with respect to viewing angle were optimized by optimizing the
design of the multi-layer top mirror of a microcavity OLED device. We first established criteria for the emission side
mirror in order to optimize light intensity and spectral shift with viewing angle. Then we designed mirror using metallic
and dielectric layers based on the target defined. The electroluminescence emission spectra of a microcavity OLED
consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole
transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer was then calculated.
Silver was used as the anode and back reflection mirror for the microcavity OLED. The simulation was performed for
both the conventional LiF/Al cathode/top mirror and the optimized 5-layered top mirror. Our results indicate that by
following the design procedure outlined, we simultaneously optimize the device for better light intensity and spectral
shift with viewing angle.
We report on detailed simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. The thick silver film was considered as a top mirror, while silver or copper films on quartz substrate were considered as bottom mirrors. The electroluminescence emission spectra, electric field distribution inside the device, carrier density and recombination rate were calculated as a function of the position of the emission layer, i.e. interface between NPB and Alq3. In order to achieve optimum emission from a microcavity OLED, it is necessary to align the position of the recombination region with the antinode of the standing wave inside the cavity. Once the optimum structure has been determined, the microcavity OLED devices were fabricated and characterized. The
experimental results have been compared to the simulations and the influence of the emission region width and position on the performance of microcavity OLEDs was discussed.
This work reports on simulation and experimental investigation into the charge transport and electroluminescence in a quantum well (QW) organic light emitting diode (OLED) consisting of a N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer, tris (8-hydroxyquinoline) aluminum (Alq3) as a potential barrier and electron transporting layer, and rubrene as potential well layer. Indium tin oxide was used as an anode, while LiF/Al was employed as a cathode. The carrier transport was simulated using one-dimensional time-independent drift-diffusion model. The influence of the well width, barrier width, and the number of QWs on the carrier distribution, recombination rate, and device performance was investigated. Finally, the device structures which yielded most promising simulation results were fabricated and characterized. The comparison between the experimental and theoretical results is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.