Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.
Using polarized light in medical imaging is a valuable tool for diagnostic purposes since light traveling through scattering tissues such as skin, blood, or cartilage may be subject to changes in polarization. We present a new detection scheme and sensor that allows for directly measuring the polarization of light electronically using a plasmonic sensor. The sensor we fabricated consists of a plasmonic nano-grating that is embedded in a Wheatstone circuit. Using resistive losses induced by optically excited plasmons has shown promise as a CMOScompatible plasmonic light detector. Since the plasmonic response is sensitive to polarization with respect to the grating orientation, measuring the resistance change under incident light supplies a direct electronic measure of the polarization of light without polarization optics. Increased electron scattering introduced by plasmons in an applied current results in a measurable decrease in electrical conductance of a grating, allowing a purely electronic readout of a plasmonic excitation. Accordingly, because of its plasmonic nature, such a detector is dependent on both the wavelength and polarization of incident light with a response time limited by the surface plasmon lifetime.
Using resistive losses induced by optically excited surface plasmons has shown promise as a CMOS-compatible plasmonic light detector. Increased electron scattering introduced by surface plasmons in an applied current results in a measurable decrease in electrical conductance of a grating, allowing a purely electronic readout of surface plasmon excitation. Accordingly, because of its plasmonic nature, such a detector is dependent on both the wavelength and polarization of incident light with a response time limited by the surface plasmon lifetime. Our ultrafast measurements with electronic read-out indicate that the response time of this detector is on the order of 1ps. Thus such a detector would enable time-resolved biomedical applications such as real-time monitoring of protein structural dynamics for pharmacological applications and research.
In this work, we take advantage of the resistive losses induced by plasmons excited at optical frequencies to design, fabricate and characterize a metal grating based CMOS-compatible light detector. A change of resistance is caused by increased electron scattering introduced by localized and delocalized surface plasmons in an applied current. We realize a spectral and polarization dependent detector that can be read out electronically. The optical response of the sensor can be tuned from the visible to IR regime by changing the geometry of the metal grating, which enables a variety of applications for an on-chip ultra-wideband plasmonic detector.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.