Low fat composition in newborns exposes them to an immediate risk of increased mortality and morbidity, inhibited physical and cognitive development and to diabetes and obesity diseases in later life. Information about nutritional and dietary status of newborns can be accessed by measuring the amount of fat composition in the body. The functions of subcutaneous fat involve energy storage, thermo-insulation and a physical buffer. Current technologies for newborn body fat monitoring are: a device based on air displacement plethesmography (PeaPod), dual-energy Xray, and underwater weighting. However they are bulky, expensive, immobile, and require technical expertise. We propose an alternative portable measurement system of in-vitro for subcutaneous fat that uses diffuse near-infrared light reflectance measurement system. We also introduce an in-vitro three-layered tissue model mimicking the subcutaneous fat layer in newborns together with a preliminary study to measure fat using dual-wavelength nearinfrared light. Based on the output data from these measurements, we have proposed a suitable transmission and scattering model. This model estimated the amount of reflected light collected by a photodetector after incident light is scattered in several fat layers. Our portable sensor is low cost and does not require training hence it is suitable for mass use in the developing world. It consists of a single LED and two photodetectors (900 nm and 1000 nm). The photodetectors wavelengths were chosen to be sensitive to fat as it exhibits a peak in the wavelength at 930 nm and to water at which exhibits a peak at 980 nm; the latter is used, to remove hydration bias. Results on a porcine tissue model demonstrate differentiation as low as 2 mm fat which is a relevant screening thickness to indicate low percentage body fat.
KEYWORDS: Microwave radiation, Liver, Electrodes, Tissues, Tomography, Ultrasonography, Laser ablation, Magnetic resonance imaging, Temperature metrology, In vivo imaging
In this study we assess the feasibility of electrical impedance tomography (EIT) to track the temperature changes during ablation in an ex-vivo ovine liver and in-vivo porcine model. 208 tetrapolar electrical impedance measurements were obtained at 30 frame/s from a 16 electrode EIT system. In the porcine model ventilation artefact was removed by low pass filtering and successful ablation related impedance change image sequences were reconstructed from four of nine liver ablations. This study indicates feasibility of the technique but was limited in the porcine model due to electrode difficulties and the difficulty in positioning the microwave applicator under ultrasound. EIT is more convenient and lower cost than other temperature monitoring methods such as MRI but spatial resolution is constrained by the relatively low number of independent measurements and ill posed reconstruction problem. Future improvements include the use of an internal electrode that could be in practice located on the microwave applicator to provide the reconstruction algorithm with improved prior information and local information of conductivity changes due to ablation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.