A novel fabrication method for apodized diffractive structures is proposed and examined experimentally and theoretically. It combines the principles of Laser Interference Lithography and a moiré effect in order to create high-quality subwavelength gratings with 2D adiabatic variation of depth. Synthesized structures can be used in optical security systems, plasmonic research and high-effective light couplers.
We present both modeling and experimental results devoted to design, fabrication and characterization of metal covered hexagonal diffraction gratings. Variation of exposition and development time allow to modify the shape of the elementary cell, leaving the depth and periodicity unchanged. The fabrication process was modeled using real parameters of the lithography bench and the photoresist, substantially improving experimental results. The high quality of metal covered gratings is confirmed by excitation of plasmonic resonances, which are in a good agreement with theoretical predictions. The described approach allows to better understand plasmonic effects in 2D periodic structures and leads to an optimized design of plasmonic sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.