We report on the commissioning of the ELIMAIA beamline laser-plasma Ion Accelerator carried out at relativistic intensities (~1021 W/cm2) with the high repetition-rate, high peak-power L3-HAPLS (>10J in 30 fs) laser available at the ELI Beamlines user facility.
Targets of different composition and thickness were used to optimize the performance of the Ion Accelerator. In the best conditions, we were able to reach proton cutoff energies around 30 MeV and fluxes above 1011/sr.
Moreover, we have demonstrated an excellent reliability and shot-to-shot stability (1-2% in energy) of the Ion Accelerator up to a repetition rate of 0.5 Hz for several hundreds of consecutive shots, along with on-shot target positioning and data acquisition and analysis systems. These results demonstrate the robustness of the developed technology available for users at the ELIMAIA beamline, thus paving the way towards its future use for fundamental and applied research, including biomedical ones.
We have developed a compact liquid target setup that produces a continuous ø50 µm cylindrical water jet, capable of operating at high vacuum. It has been tested with a commercial ultrashort-pulse laser in a series of proof-of-principle laser-driven ion acceleration and x-ray generation experiments at repetition rates up to 1 kHz. In optimized conditions, measurements by the time-of-flight (TOF) method have demonstrated a proton signal cut-off energy of 179±9 keV. The laser-generated x-ray emission was characterized in the range 2-36 keV and used as excitation for x-ray fluorescence spectroscopy (XRF) measurements.
We review a number of instruments employed in a high-intensity J-KAREN-P laser-solid interaction experiment and discuss the applicability of the diagnostics to the best target position determination with a ~10 μm accuracy, while the focal spot size was ~1 μm and peak intensity was up to 7×1021 W/cm2. We discuss both front- and back-side diagnostics, some of them operated in the infrared, visible and ultraviolet ranges, while others in the extreme ultraviolet, soft X-ray and gamma-ray ranges. We found that the applicability of some of the instruments to the best at-focus target position determination depends on the thickness of the target.
The availability of the ultra-high intensity (>10^21 W/cm2), PW (30J/30fs) L3-HAPLS laser at ELI-Beamlines allows entering advanced laser-driven ion acceleration regimes, at a repetition rate up to 10 Hz. A sub-aperture of the L3-HAPLS laser beam (1.5J/30fs) was recently used to accelerate protons with energies approaching the 10-MeV level using the relatively thick (10-40 µm) plastic and metallic foils. Ion diagnostics were optimized for a real-time feedback during the experiment through various detectors, such as ion collectors, single-crystal diamond and silicon carbide detectors, Thomson parabola spectrometer and gamma-ray scintillators, along with a set of complementary passive detectors such as radiochromic films (RCF) and solid-state nuclear track films (CR-39). Analysis of large data acquired during the experimental campaign, summary of the key results and optimal conditions for laser-driven ion acceleration will be presented and discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.