SignificanceA shortcoming of the routine clinical use of diffuse optics (DO) in the injured head has been that the results from commercial near-infrared spectroscopy-based devices are not reproducible, often give physiologically invalid values, and differ among systems. Besides the limitations due to the physics of continuous-wave light sources, one culprit is the head heterogeneity and the underlying morphological and functional abnormalities of the probed tissue.AimThe aim is to investigate the effect that different tissue alterations in the damaged head have on DO signals and provide guidelines to avoid data misinterpretation.ApproachDO measurements and computed tomography scans were acquired on brain-injured patients. The relationship between the signals and the underlying tissue types was classified on a case-by-case basis.ResultsExamples and suggestions to establish quality control routines were provided. The findings suggested guidelines for carrying out DO measurements and speculations toward improved devices.ConclusionsWe advocate for the standardization of the DO measurements to secure a role for DO in neurocritical care. We suggest that blind measurements are unacceptably problematic due to confounding effects and care using a priori and a posteriori quality control routines that go beyond an assessment of the signal-to-noise ratio that is typically utilized.
Intracranial pressure (ICP) is a critical biomarker measured invasively with the risk of complications. There is a need for non-invasive methods to estimate ICP. Diffuse correlation spectroscopy (DCS) allows the non-invasive measurement of pulsatile, microvascular cerebral blood flow which contains information about ICP. Recently, our proof-of-concept study used machine-learning to deduce ICP from DCS signals to estimate ICP resulting in excellent linearity and a reasonable accuracy (±4 mmHg). Here, we extend to a multi-center (three centers) data set of adults with acute brain injury (N=34). We will present the results from the complete data set as new data flows in.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.