28nm metal 90nm pitch is one of the most challenging processes for computational lithography due to the resolution limit of DUV scanners and the variety of designs allowed by design rules. Classical two dimensional hotspot simulations and OPC correction isn’t sufficient to obtain required process windows for mass production. This paper shows how three dimensional resist effects like top loss and line end shortening have been calibrated and used during the OPC process in order to achieve larger process window. Yield results on 28FDSOI product have been used to benchmark and validate gain between classical OPC and R3D OPC.
Patterning process control has undergone major evolutions over the last few years. Critical dimension, focus, and overlay control require deep insight into process-variability understanding to be properly apprehended. Process setup is a complex engineering challenge. In the era of mid k1 lithography (>0.6), process windows were quite comfortable with respect to tool capabilities, therefore, some sources of variability were, if not ignored, at least considered as negligible. The low k1 patterning (<0.4) era has broken down this concept. For the most advanced nodes, engineers need to consider such a wide set of information that holistic processing is often mentioned as the way to handle the setup of the process and its variability. The main difficulty is to break down process-variability sources in detail and be aware that what could have been formerly negligible has become a very significant contributor requiring control down to a fraction of a nanometer. The scope of this article is to highlight that today, engineers have to zoom deeper into variability. Even though process tools have greatly improved their capabilities, diminishing process windows require more than tool-intrinsic optimization. Process control and variability compensations are major contributors to success. Some examples will be used to explain how complex the situation is and how interlinked processes are today.
KEYWORDS: 3D modeling, Calibration, Data modeling, Photomasks, Lithography, Semiconducting wafers, Scanning electron microscopy, Atomic force microscopy, Process control, Etching
The objective of this paper is to extend the ability of a more stable overall process control for the 28 nm Metal layer. A method to better control complex 2D-layout structures for this node is described. Challenges are coming from the fact that the structures, which limit the process window are mainly of 2D routing nature and are difficult to monitor. Within the framework of this study the emphasis is on how to predict these process-window-limiting structures upfront, to identify root causes and to assist in easier monitoring solutions enhancing the process control. To address those challenges, the first step is the construction of a reliable Mask-3D and Resist-3D model. Advanced 3Dmodeling allows better prediction of process variation upfront. Furthermore it allows highlighting critical structures impacted by either best-focus shifts or by low-contrast resist-imaging effects, which then will be transferred non-linearly after etch. This paper has a tight attention on measuring the 3D nature of the resist profiles by multiple experimental techniques such as Cross-section scanning electron microscopy methods (X-SEM) and atomic force microscopy (AFM). Based on these measurements the most reliable data are selected to calibrate full-chip Resist-3D model with. Current results show efficient profile matching among the calibrated R3D model, wafer AFM and X-SEM measurements. In parallel this study enables the application of a new metric as result of the resist profiles behavior in function of exposure dose. In addition it renders the importance on the resist shape. Together these items are reflected to be efficient support on process optimization and improvement on the process control.
The low-k1 domain of immersion lithography tends to result in much smaller depths of focus (DoF) compared to prior technology nodes. For 28 nm technology and beyond it is a challenge since (metal) layers have to deal with a wide range of structures. Beside the high variety of features, the reticle induced (mask 3D) effects became non-negligible. These mask 3D effects lead to best focus shift. In order to enhance the overlapping DoF, so called usable DoF (uDoF), alignment of each individual features best focus is required. So means the mitigation of the best focus shift. This study investigates the impact of mask 3D effects and the ability to correct the wavefront in order to extend the uDoF. The generation of the wavefront correction map is possible by using computational lithographic such Tachyon simulations software (from Brion). And inside the scanner the wavefront optimization is feasible by applying a projection lens modulator, FlexWaveTM (by ASML). This study explores both the computational lithography and scanner wavefront correction capabilities. In the first part of this work, simulations are conducted based on the determination and mitigation of best focus shift (coming from mask 3D effects) so as to improve the uDoF. In order to validate the feasibility of best focus shift decrease by wavefront tuning and mitigation results, the wavefront optimization provided correction maps are introduced into a rigorous simulator. Finally these results on best focus shift and uDoF are compared to wafers exposed using FlexWave then measured by scanning electron microscopy (SEM).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.