Laser Plasma Accelerators (LPAs), reaching gigavolt-per-centimeter accelerating fields, can generate high peak current, low emittance and GeV class electron beams that can be qualified by a Free Electron Laser (FEL) application. We report here on the commissioning of the COXINEL beamline driven by the HZDR plasma accelerator and experimental demonstration of FEL lasing at 270 nm in a seeded configuration. We also present the transport and characterization of LPA based beams using different imaging systems along the beamline. The use of a streak camera and a UV spectrometer enable to align the seed and the electron beam in the temporal, spectral and transverse domains. Furthermore, the appearance of interference fringes, resulting from the interaction between the phase-locked emitted radiation and the seed, confirms longitudinal coherence, representing an essential feature of seeded FELs. These results are comforted by ELEGANT and GENESIS simulations.
Laser plasma accelerators produce ultra-short, low emittance electron bunches that show potential for use in multistage colliders or for seeding free electron lasers. However, to optimize these novel accelerators for such applications, new diagnostics for micron-scale beams must be developed. In this paper we present single shot coherent optical transition radiation diagnostics that measure spatial and momentum distributions of microbunched high energy electron populations at the exit of a laser plasma accelerator. We show correspondence between the measured position and momentum of the electron beamlets as well as transverse distribution reconstructions of the coherent portion of the beam on a single shot at a variety of wavelengths. Finally, we propose a scheme for a full three-dimensional reconstruction of an electron bunch through coherent transition radiation analysis.
Extreme field gradients intrinsic to relativistic laser plasma interactions enable compact MeV proton accelerators with unique bunch characteristics. Yet, direct control of the proton beam profile is usually not possible. So far, only complex micro-engineering of the relativistic plasma accelerator itself and limited adoption of conventional beam optics provided access to global beam parameters that define propagation.
We present a novel, counter-intuitive all-optical approach to imprint detailed spatial information from the driving laser pulse to the proton bunch.
The concept was motivated by an effect initially observed in an experiment dedicated to laser-driven proton acceleration from a renewable micrometer sized cryogenic Hydrogen jet target at the 150 TW Draco laser at HZDR. A compact, recollimating single plasma mirror was used to enhance the temporal laser contrast, which could be monitored on a single-shot base by means of self-referenced spectral interferometry with extended time excursion (SRSI-ETE) at unprecedented dynamic and temporal range. Unexpectedly, the accelerated proton beam profile showed in this experiment prominent features of the collimated laser beam, such as the shadow of obstacles inserted deliberately in the beam.
In a series of further experiments, the spatial profile of the energetic proton bunch was found to exhibit identical features as the fraction of the laser pulse passing around a target of limited size. The formation of quasi-static electric fields in the beam path by ionization of residual gas in the experimental chamber results in asynchronous information transfer between the laser pulse and the naturally delayed proton bunch.
Such information transfer between the laser pulse and the naturally delayed proton bunch is attributed to the formation of quasi-static electric fields in the beam path by ionization of residual gas. Essentially acting as a programmable memory, these fields provide access to a new level of proton beam manipulation.
Simulations of laser matter interaction at extreme intensities that have predictive power are nowadays in reach when considering codes that make optimum use of high performance compute architectures. Nevertheless, this is mostly true for very specific settings where model parameters are very well known from experiment and the underlying plasma dynamics is governed by Maxwell's equations solely. When including atomic effects, prepulse influences, radiation reaction and other physical phenomena things look different. Not only is it harder to evaluate the sensitivity of the simulation result on the variation of the various model parameters but numerical models are less well tested and their combination can lead to subtle side effects that influence the simulation outcome.
We propose to make optimum use of future compute hardware to compute statistical and systematic errors rather than just find the mots optimum set of parameters fitting an experiment. This requires to include experimental uncertainties which is a challenge to current state of the art techniques. Moreover, it demands better comparison to experiments as inclusion of simulating the diagnostic's response becomes important.
We strongly advocate the use of open standards for finding interoperability between codes for comparison studies, building complete tool chains for simulating laser matter experiments from start to end.
The injection process of electrons into the plasma cavity in laser-wakefield accelerators is a nonlinear process that strongly influences the property of the accelerated electrons. During the acceleration electrons perform transverse (betatron) oscillations around the axis. This results in the emission of hard x-ray radiation (betatron radiation) whose characteristics depend directly on the dynamic of the accelerated electrons. Thus, betatron radiation can be utilized as a powerful diagnostic tool to investigate the acceleration process inside the wakefield. Here we describe our recent LWFA experiments deploying ionization induced injection technique carried out with the Draco Ti:Sapphire laser. We focused 30 fs short pulses down to a FWHM spot size of 19 μm resulting in a normalized vacuum laser intensity a0 = 3.3 on a gas target. The target, which was a supersonic gas jet, provided a flat plasma profile of 3mm length. By varying the plasma density from 2x10^18 cm^-3 to 5x10^18 cm^-3 and the laser pulse energy from 1.6 J to 3.4 J we were able to tune the electron bunch and betatron parameters. Electron spectra were obtained by acquiring an energy resolved and charge calibrated electron profile after detection from the beam axis by a permanent magnetic dipole. Simultaneously, a back-illuminated and deep-depleted CCD placed on axis recorded the emitted x-ray photons with energies up to 20keV. Equipped with an 2D spectroscopy technique based on single pixel absorption events, we reconstructed the corresponding energy resolved x-ray spectrum for every shot and deduced the betatron source size at the plasma exit. Combining the data of the electron and betatron spectrum, we compare the characteristics of the betatron spectra for different electron bunches. In our experiments we recorded a total number of 25x10^4 photons per shot within a divergence angle of 1 mrad and betatron radii in the order of 1 μm. Finally, we compare our results with simulated spectra from the parallel classical radiation calculator Clara2 that is based on the Liénard-Wiechert potentials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.