We have developed a suite of novel infrared-blocking filters made by embedding scattering particles in a polymer aerogel substrate. Our developments allow us to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. Our filters are targeted for use in a variety of applications, from ground-based CMB experiments to planetary science probes. We summarize the formulations we have fabricated and tested to date, including several polyimide base aerogel formulations incorporating a range of size distributions of diamond scattering particles. We also describe the spectral characterization techniques used to measure the filters’ optical properties, including the development of a mm-wave Fourier transform spectrometer testbed.
Infrared-blocking scattering aerogel filters have a broad range of potential applications in astrophysics and planetary science observations in the far-infrared, sub-millimeter, and microwave regimes. Successful dielectric modeling of aerogel filters allowed the fabrication of samples to meet the mechanical and science instrument requirements for several experiments, including the Sub-millimeter Solar Observation Lunar Volatiles Experiment (SSOLVE), the Cosmology Large Angular Scale Surveyor (CLASS), and the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). Thermal multi-physics simulations of the filters predict their performance when integrated into a cryogenic receiver. Prototype filters have survived cryogenic cycling to 4 K with no degradation in mechanical properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.