Pi of the Sky is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky to a depth of 12m−13m and with time resolution of the order of 10 seconds. Custom designed CCD cameras are equipped with Canon lenses f = 85 mm, f/d = 1.2 and cover 20° × 20° of the sky each. The final system with 16 cameras on 4 equatorial mounts was completed in 2014 at the INTA El Arenosillo Test Centre in Spain.
GRB160625B was an extremely bright GRB with three distinct emission episodes. Cameras of the Pi of the Sky observatory in Spain were not observing the position of the GRB160625B prior to the first emission episode. Observations started only after receiving Fermi/GBM trigger, about 140 seconds prior to the second emission. As the position estimate taken from the Fermi alert and used to position the telescope was not very accurate, the actual position of the burst happened to be in the overlap region of two cameras, resulting in two independent sets of measurements. Light curves from both cameras were reconstructed using the Luiza framework. No object brighter than 12.4m (3σ limit) was observed prior to the second GRB emission. An optical flash was identified on an image starting -5.9s before the time of the Fermi/LAT trigger, brightening to about 8m on the next image and then becoming gradually dimmer, fading below our sensitivity after about 400s.
Emission features as measured in different spectral bands indicate that the three emission episodes of GRB160625B were dominated by distinct physics process. Simultaneously observations in gamma-rays and optical wavelengths support the hypothesis that this was the first observed transition from thermal to non-thermal radiation in a single GRB. Main results of the combined analysis are presented.
Pi of the Sky is a system of wide field-of-view robotic telescopes designed for observations of short timescale astrophysical phenomena, especially for prompt optical GRB emission. The apparatus designed for autonomous operation follows the predefined observing strategy and adopts to the actual running conditions, monitoring a large part of the sky with time resolution of the order of 1 - 10 seconds and range 12m-13m. Observation strategy and system design was successfully tested with a prototype detector in Chile and starting 2013 the final Pi of the Sky detector system in operation at the INTA El Arenosillo Test Centre in Spain. For the analysis of the data from a wide field-of-view system a set of dedicated algorithms have been developed, which allowed us to reduce photometry uncertainty for bright stars to the level of 0.015m– 0.02m.
Design of the Pi of the Sky telescopes allows also for measurements of near-Earth objects as comets, asteroids, satellites and space debris. Precise determination of the orbit parameters of the geostationary satellites is possible when using a parallax measured with simultaneous observations from Spain and Chile. Dedicated tests have been performed recently to verify system capabilities for observation of objects on lower orbits, moving at higher speeds. First results are discussed in this contribution.
"Pi of the Sky" is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky with 12m-13m range and time resolution of the order of 1 - 10 seconds. For now there are two working "Pi of the Sky" observatories: in San Pedro de Atacama (Chile) and near Mazagón in Southern Spain. In this paper we report on the status of the project, as well as recent observation of asteroid 2004BL86, which passed the Earth in late January 2015, DG CVn outburst in 2014, satellites observations and our future plans.
Pi of the Sky is a system of wide field-of-view robotic telescopes designed for observations of short timescale astrophysical phenomena, especially for prompt optical GRB emission. The apparatus was designed for autonomous operation, follows the predefined observing strategy and adopts it to the actual conditions, monitoring a large part of the sky with time resolution of the order of 1 - 10 seconds and range 12m-13m.
Observation strategy and system design was successfully tested with a prototype detector working in 2004-2009 at Las Campanas Observatory, Chile, and moved to San Pedro de Atacama Observatory in March 2011. In October 2010 the first unit of the final Pi of the Sky detector system, with 4 CCD cameras, was successfully installed in the INTA El Arenosillo Test Centre in Spain. Simultaneous observations from locations in Chile and Spain allow a systematic search for optical transients of cosmological origin. Accurate analysis of data arising from a wide-field system like Pi of the Sky is a real challenge because of a number of factors that can influence the measurements. We have developed a set of dedicated algorithms which remove poor quality measurements, improve photometric accuracy and allow us to reach uncertainties as low as 0.015– 0.02 mag.
Three more units (12 CCD cameras) are being prepared for installation on a new platform in INTA, aiming at a total coverage of about 6400 square degrees. Status and performance of the detectors is presented.
GLORIA stands for “GLObal Robotic-telescopes Intelligent Array” and it is the first free and open-access network of robotic telescopes on the world. Based on a Web 2.0 environment amateur and professional users can do research in astronomy by observing with robotic telescopes, and/or analyzing data acquired with GLORIA, or from other free access databases. GLORIA project develops free standards, protocols and tools for controlling Robotic Telescopes and related instrumentation, for scheduling observations in the telescope network, and for conducting so-called off-line experiments based on the analysis of astronomical data. This contribution summarizes the implementation and results from the first research level off-line demonstrator experiment implemented in GLORIA, which was base on the data collected with the “Pi of the Sky” telescope in Chile.
Pi of the Sky is a system of wide field-of-view robotic telescopes, which search for short time-scale astrophysical
phenomena, especially for prompt optical GRB emission. On the other hand, the data could be used to search for variable
stars. The analysis of variable star are based on precise photometry, which requires detailed image analysis. The main
goal of cataloging procedure is to identify all objects in an image, and to add their measurements to the database. We
would like to present new procedure to catalog data gathered with Pi of the Sky detector equipped with R filter in San
Pedro de Atacama in season 2009-2011.
Starting March 2011 the “Pi of the Sky” project has two observatories in use: in northern Chile and in southern
Spain. Since then we are able to observe a parallax of objects, which pass close to the Earth. Simultaneous
observations from two sites are very important to us, because this allows us to reject false flash observations,
due to cosmic radiation, meteors, planes, etc. In this paper we present theoretical limitations of our parallax
observations. Moreover, first results are shown.
We have developed a new monitoring system for the "Pi of the Sky" experiment. It is based on the "open surce" Icinga
package. The system allows to continuously monitor vital parameters of detectors and computers which control them.
It facilitates a fast response to anomalies or failures in system's performance. Automatic recording of parameters of
all components of the "Pi of the Sky" system allows an efficient identification of possible causes of eventual failures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.