We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with metal nanoparticles can enhance atomically thin transition metal dichalcogenides’ absorption and scattering capabilities, however semiconducting quantum dots do not create such effect.
In order to protect optoelectronic and mechanical properties of atomically thin layered materials (ATLMs) fabricated over SiO2/Si substrates, a secondary oxide or nitride layer can be capped over. However, such protective capping might decrease ATLMs’ visibility dramatically. Similar to the early studies conducted for graphene, we numerically determine optimum thicknesses both for capping and underlying oxide layers for strongest visibility of monolayer MoS2, MoSe2, WS2, and WSe2 in different regions of visible spectrum. We find that the capping layer should not be thicker than 60 nm. Furthermore the optimum capping layer thickness value can be calculated as a function of underlying oxide thickness, and vice versa.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.