Miniaturising ultrasonic field mapping systems could lead to novel endoscopes capable of photoacoustic tomography and other techniques. However, developing high-resolution arrays of sensitive, sub-millimetre scale ultrasound sensors presents a challenge for traditional piezoelectric transducers. To address this challenge, we conceived an ultrasonic detection concept in which an optical ultrasonic sensor array is read out using a laser beam scanned through a 0.24 mm diameter multimode optical fibre using optical wavefront shaping. We demonstrate this system enables ultrasonic field mapping with ⪆2500 measurement points, paving the way to developing miniaturized photoacoustic endoscopes and other ultrasonic systems based on the presented concept.
There has been considerable interest in extending photoacoustic imaging techniques to endoscopic devices, which would enable a diverse range of applications, e.g. assessment of coronary artery disease or surgical guidance.
However, the difficulty of miniaturising traditional piezoelectric sensors has mostly prevented tomography-mode endoscopic imaging, where an array of sensors is used to reconstruct the full ultrasound field to centimeter-scale depths.
In this work we demonstrate how wavefront shaping through multimode fibres onto a Fabry-Perot optical ultrasound sensor can overcome this limitation, producing an endoscopic imaging system with a footprint an order of magnitude smaller than the state of the art.
The THz time domain spectrometer (THz-TDS) has revolutionized the adoption of THz science in fields such as medicine, material characterization, pharmaceutical research and biology among others. Traditionally a THz-TDS was based on a titanium sapphire laser, while most of the commercially sold spectrometers today adopt fiber lasers. Vertical External Cavity Surface emitting lasers or VECSELs have potential to be the future laser of choice for the implementation of THz spectrometers, as they are small, low-cost, low noise and high repetition rate. Here I will outline the progress in our laboratory and the general community concerning VECSEL-THz technology and I will account the problems that have to be solved for the VECSEL-THz technology to succeed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.