Pancreatic ductal adenocarcinoma (PDAC) ranks among the malignancies with the highest fatality and morbidity rates. This is predominantly attributable to an absence of understanding the intricate and diverse microenvironment of the tumor. We use terahertz time-domain spectroscopy (THz-TDS) imaging in transmission geometry to probe ex-vivo the heterogenous microenvironment of the genetically modified murine PDAC tissue that closely resembles the PDAC heterogeneity in human malignancy. We introduced a maximum a-posteriori probability estimation algorithm to objectively the tumor’s heterogenous microenvironment using the average values of refractive index and absorption coefficient within the useable terahertz bandwidth as imaging markers. Direct comparison of stained histopathologic images and the refractive index and the absorption coefficient high-resolution, two-dimensional maps of the same PDAC samples confirms the high potential of the THz-TDS method for tumor tissue characterization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.