KEYWORDS: Confocal microscopy, Imaging systems, Tomography, Tissues, Image resolution, Data storage, Super resolution, 3D imaging standards, 3D image processing, Luminescence
Confocal microscopy has been a standard tool to acquire 3D fluorescence biological images at sub-micron resolution. The scattering effects in turbid tissue and the specifications of high N.A. objective lens limit the image dimensions, so the confocal microscopy frequently provides images for micro-anatomy. However, the high quality large volume tomography is still desired to provide correlative images between micro- and macro-anatomy. In this presentation, we extend the dimensions of micro-image at single-cell resolution from tens micrometer levels to multi-millimeter levels by integrating steps of tissue clearing, vibratome sample sectioning, stepper image stitching, and confocal imaging techniques, and we named this system as Serial Tiled-Z axial (STZ) tomography. Mapping the whole-body connectome, a wiring diagram of the entire nervous system is the first application of STZ tomography and provides the whole body neural circuits for governing internal body functions and external behaviors. STZ tomography generates high-resolution in situ datasets for accurate registration of structural and functional data collected from different individuals into a common three-dimensional space for big data storage, search, sharing, analysis, and visualization. Inserting a super resolution module, STZ tomography opens the door to super resolution imaging of routine systematic neuroanatomy of large tissues, such as the whole mouse and human brain. The second application is to map tumor tissue samples which are free from distortion problem from dehydration in the H&E protocol.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.