KEYWORDS: Microscopy, Luminescence, Optical spheres, 3D image processing, Image segmentation, Surgery, Data modeling, 3D modeling, Network architectures, Binary data
Purpose: Fluorescence microscopy visualizes three-dimensional subcellular structures in tissue with two-photon microscopy achieving deeper penetration into tissue. Nuclei detection, which is essential for analyzing tissue for clinical and research purposes, remains a challenging problem due to the spatial variability of nuclei. Recent advancements in deep learning techniques have enabled the analysis of fluorescence microscopy data to localize and segment nuclei. However, these localization or segmentation techniques would require additional steps to extract characteristics of nuclei. We develop a 3D convolutional neural network, called Sphere Estimation Network (SphEsNet), to extract characteristics of nuclei without any postprocessing steps.
Approach: To simultaneously estimate the center locations of nuclei and their sizes, SphEsNet is composed of two branches to localize nuclei center coordinates and to estimate their radii. Synthetic microscopy volumes automatically generated using a spatially constrained cycle-consistent adversarial network are used for training the network because manually generating 3D real ground truth volumes would be extremely tedious.
Results: Three SphEsNet models based on the size of nuclei were trained and tested on five real fluorescence microscopy data sets from rat kidney and mouse intestine. Our method can successfully detect nuclei in multiple locations with various sizes. In addition, our method was compared with other techniques and outperformed them based on object-level precision, recall, and F1 score. Our model achieved 89.90% for F1 score.
Conclusions: SphEsNet can simultaneously localize nuclei and estimate their size without additional steps. SphEsNet can be potentially used to extract more information from nuclei in fluorescence microscopy images.
Microscopy image analysis can provide substantial information for clinical study and understanding of biological structures. Two-photon microscopy is a type of fluorescence microscopy that can image deep into tissue with near-infrared excitation light. We are interested in methods that can detect and characterize nuclei in 3D fluorescence microscopy image volumes. In general, several challenges exist for counting nuclei in 3D image volumes. These include “crowding” and touching of nuclei, overlapping of nuclei, and shape and size variances of the nuclei. In this paper, a 3D nuclei counter using two different generative adversarial networks (GAN) is proposed and evaluated. Synthetic data that resembles real microscopy image is generated with a GAN and used to train another 3D GAN that counts the number of nuclei. Our approach is evaluated with respect to the number of groundtruth nuclei and compared with common ways of counting used in the biological research. Fluorescence microscopy 3D image volumes of rat kidneys are used to test our 3D nuclei counter. The accuracy results of proposed nuclei counter are compared with the ImageJ’s 3D object counter (JACoP) and the 3D watershed. Both the counting accuracy and the object-based evaluation show that the proposed technique is successful for counting nuclei in 3D.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.