It is a top level science requirement that data from the Daniel K Inouye Solar Telescope (DKIST) is archived and made available to the world wide astronomical community. Data from DKIST must contain sufficient meta-data to allow proper post processing. This paper describes how the Telescope Control System (TCS), Wavefront Correction Control System (WCCS) and individual instrument control systems work together with the camera systems to provide the world coordinate information (WCI) meta-data for 2-d imaging detectors.
KEYWORDS: Photonic integrated circuits, Java, Control systems, Data communications, Observatories, Device simulation, Commercial off the shelf technology, Telecommunications, Solar telescopes, Data analysis
As PLCs evolve from simple logic controllers into more capable Programmable Automation Controllers (PACs),
observatories are increasingly using such devices to control complex mechanisms1, 2. This paper describes use of COTS
software to control such hardware using the Advanced Technology Solar Telescope (ATST) Common Services
Framework (CSF). We present the Enclosure Control System (ECS) under development in Spain and the UK.
The paper details selection of the commercial PLC communication library PLCIO. Implemented in C and delivered with
source code, the library separates the programmer from communication details through a simple API. Capable of
communicating with many types of PLCs (including Allen-Bradley and Siemens) the API remains the same irrespective
of PLC in use.
The ECS is implemented in Java using the observatory's framework that provides common services for software
components. We present a design following a connection-based approach where all components access the PLC through
a single connection class. The link between Java and PLCIO C library is provided by a thin Java Native Interface (JNI)
layer. Also presented is a software simulator of the PLC based upon the PLCIO Virtual PLC. This creates a simulator
operating below the library's API and thus requires no change to ECS software. It also provides enhanced software
testing capabilities prior to hardware becoming available.
Results are presented in the form of communication timing test data, showing that the use of CSF, JNI and PLCIO
provide a control system capable of controlling enclosure tracking mechanisms, that would be equally valid for telescope
mount control.
AMOS is in charge of the development of the unit telescopes for the MRO interferometer. This paper depicts the
progress of the project and presents the results of the factory acceptance tests that were performed at AMOS facilities.
Those tests are the earliest verifications of the telescope performance. AMOS has now extensive experience in testing
small and large instruments, including optical testing, alignment, mechanical static, dynamic measurements, system
identification, etc. It is this combination of various techniques of measurement that produce accurate and reliable results.
KEYWORDS: Telescopes, LabVIEW, Control systems, Interferometers, Data modeling, Magdalena Ridge Observatory, Human-machine interfaces, Interfaces, Photonic integrated circuits, Local area networks
This paper describes the telescope control system for the Magdalena Ridge Observatory Interferometer. To achieve the
rapid development time required by the project we made use of two software packages, LabVIEW from National
Instruments and TCSpk from Tpoint Software. The telescope control system is built from a set of components that
conform to a standard interface and implement a set of component specific commands. Data is distributed throughout the
system in a uniform manner by an event system that uses the publish-subscribe paradigm.
The Gemini Multi-Object Spectrograph (GMOS) was delivered and commissioned at the Gemini North Observatory and it has been in regular science use since November 2001. While GMOS-North met all its reliability and performance requirements on flexure, image quality and throughput, the high velocity precision (2 km/sec) mode will not be implemented until the Atmospheric Dispersion Compensator/Corrector (ADC) is delivered and commissioned.
The ADC optical design incorporating two bonded prism pairs and two corrector lenses is described along with its opto-mechanical and software control design considerations as related to the overall system requirements including: image quality, error budget, optical mounting, opto-mechanical packaging, mechanism control, handling, deployment and telescope observational control considerations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.