Type-II superlattices (T2SLs) have several fundamental advantages over bulk infrared-sensitive materials due to larger band edge effective masses and the ability to have their band structures engineered to suppress Auger recombination, leading to lowering tunneling currents, longer carrier lifetimes and higher ideal sensitivity. Realizing in practice the potential performance gains relies heavily on reducing the number or efficacy of defects that form Shockley-Read-Hall (SRH) recombination centers, which otherwise limit carrier lifetimes. InAs/GaInSb T2SLs typically have relatively short minority carrier lifetimes in comparison with bulk HgCdTe, which has limited the detectivities of photodetectors based on these T2SLs at both cryogenic and ambient operating temperatures. Studies have shown that InAs/InAsSb T2SLs lattice matched to GaSb substrates are comparable in ideal photodiode performance to InAs/GaInSb ones. Reducing the electrical activity of defects by passivating them with hydrogen is equivalent to lowering their density, and has proven successful in other semiconductor systems. We report here results from Ga-free and Ga-containing T2SLs exposed to inductively-coupled plasmas (ICPs). Our technical approach consisted of characterizing the basic material properties of LWIR InAs/InAsSb T2SL wafers and device performance of LWIR InAs/GaSb T2SL photodiodes that were bulk-passivated with atomic hydrogen, and comparing with unpassivated samples. On average, the in-plane Hall electron mobility increased from 1800 cm2/Vs to 6800 cm2/Vs after hydrogenation. ICP hydrogenation also improved the minority carrier lifetime for each of the explored ICP conditions. Lifetime values increased from an average of 80 ns before hydrogenation to almost 200 ns, a relative increase of over 200%, suggest that some recombination-mediating defects have been at least partially passivated. The Hall mobility improvements were found to be rather stable over the considered short periods of room temperature storage.
II-VI colloidal quantum dots (CQDs) have made significant technological advances over the past several years, including the world’s first demonstration of MWIR imaging using CQD-based focal plane arrays. The ultra-low costs associated with synthesis and device fabrication, as well as compatibility with wafer-level focal plane array fabrication, make CQDs a very promising infrared sensing technology. In addition to the benefit of cost, CQD infrared imagers are photon detectors, capable of high performance and fast response at elevated operating temperatures. By adjusting the colloidal synthesis, II-VI CQD photodetectors have demonstrated photoresponse from SWIR through LWIR. We will discuss our recent progress in the development of low cost infrared focal plane arrays fabricated using II-VI CQDs.
Suspensions of HgTe colloidal quantum dots (CQD) are readily synthesized with infrared energy gaps between 3 and 12 microns. Infrared photodetection using dried films of these CQDs has been demonstrated up to a cutoff wavelength of 12 microns. The synthesis of CQDs and the fabrication of detector devices employ bench-top chemistry techniques, leading to the potential for the easy manufacture of infrared photon detecting imagers at low cost. Recent electrical and optical measurements of these CQD films are discussed. Recent successful prototypes of complete focal plane arrays from CQD films and commercially-available ROICs are also described.
Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared
(LWIR) bands to detect, identify and map complex chemical agents based on their rotational and
vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or
Fourier transform spectrometers to separate the incoming light into spectral bands. At present,
these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited
by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized
imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems
(MEMS)-based components opens the door for producing low-cost, reliable optical
systems. We present here our work on developing a miniaturized IR imaging spectrometer by
coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a
MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator
(SOI) wafers using bulk micromachining technology. The fixed membrane is a standard
silicon membrane, fabricated using back etching processes. The movable membrane is
implemented as an X-beam structure to improve mechanical stability. The geometries of the
distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired
spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are
determined by modeling the spectral performance of the FPFs as a function of DBR surface
roughness and membrane curvature. These fabrication non-idealities are then mitigated by
developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc
Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials,
respectively, and are deposited using an electron beam process. Simulations are presented
showing the impact of these changes and non-idealities in both a device and systems level.
Spatial noise and the loss of photogenerated current due material non-uniformities limit the performance of long
wavelength infrared (LWIR) HgCdTe detector arrays. Reducing the electrical activity of defects is equivalent to
lowering their density, thereby allowing detection and discrimination over longer ranges. Infrared focal plane arrays
(IRFPAs) in other spectral bands will also benefit from detectivity and uniformity improvements. Larger signal-to-noise
ratios permit either improved accuracy of detection/discrimination when an IRFPA is employed under current operating
conditions, or provide similar performance with the IRFPA operating under less stringent conditions such as higher
system temperature, increased system jitter or damaged read out integrated circuit (ROIC) wells. The bulk passivation of
semiconductors with hydrogen continues to be investigated for its potential to become a tool for the fabrication of high
performance devices. Inductively coupled plasmas have been shown to improve the quality and uniformity of
semiconductor materials and devices. The retention of the benefits following various aging conditions is discussed here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.