Remote assessment of physiological parameters has enabled patient diagnostics without the need for a medical professional to become exposed to potential communicable diseases. In particular, early detection of oxygen saturation, abnormal body temperature, heart rate, and/or blood pressure could affect treatment protocols. The modeling effort in this work uses an adding-doubling radiative transfer model of a seven-layer human skin structure to describe absorption and reflection of incident light within each layer. The model was validated using both abiotic and biotic systems to understand light interactions associated with surfaces consisting of complex topography as well as multiple illumination sources. Using literature-based property values for human skin thickness, absorption, and scattering, an average deviation of 7.7% between model prediction and experimental reflectivity was observed in the wavelength range of 500-1000 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.