We present a plan to address the calibration needs of the Wide Field Instrument (WFI) on the Wide Field Infrared Space Telescope (WFIRST), for on on-orbit observations and ground testing. The science mission of WFI is based on a combination of large surveys, a Guest Observer program, and a strong archival research program.
The WFIRST Science Requirements Document delineates several data quality and calibration requirements for the Mission. The Calibration Plan aims to be prescriptive and predictive, discussing which observations will be needed and estimating the total time required to carry out such observations. We discuss these requirements from an instrumental perspective, and identify the measurements, observations, and analysis steps needed to achieve the desired calibration and data quality levels, especially in terms of on-orbit observations..
H. T. Diehl, E. Neilsen, R. Gruendl, T. M. Abbott, S. Allam, O. Alvarez, J. Annis, E. Balbinot, S. Bhargava, K. Bechtol, G. Bernstein, R. Bhatawdekar, S. Bocquet, D. Brout, R. Capasso, R. Cawthon, C. Chang, E. Cook, C. Conselice, J. Cruz, C. D'Andrea, L. da Costa, R. Das, D. DePoy, A. Drlica-Wagner, A. Elliott, S. Everett, J. Frieman, A. Fausti Neto, A. Ferté, I. Friswell, K. Furnell, L. Gelman, D. Gerdes, M. S. Gill, D. Goldstein, D. Gruen, D. Gulledge, S. Hamilton, D. Hollowood, K. Honscheid, D. James, M. Johnson, M. W. Johnson, S. Kent, R. Kessler, G. Khullar, E. Kovacs, A. Kremin, R. Kron, N. Kuropatkin, J. Lasker, A. Lathrop, T. Li, M. Manera, M. March, J. Marshall, M. Medford, F. Menanteau, I. Mohammed, M. Monroy, B. Moraes, E. Morganson, J. Muir, M. Murphy, B. Nord, A. Pace, A. Palmese, Y. Park, F. Paz-Chinchón, M. E. Pereira, D. Petravick, A. Plazas, J. Poh, T. Prochaska, A. Romer, K. Reil, A. Roodman, M. Sako, M. Sauseda, D. Scolnic, L. Secco, I. Sevilla-Noarbe, N. Shipp, J. Smith, M Soares-Santos, B. Soergel, A. Stebbins, K. Story, K. Stringer, F. Tarsitano, B. Thomas, D. Tucker, K. Vivas, A. Walker, M.-Y. Wang, C. Weaverdyck, N. Weaverdyck, W. Wester, C. Wethers, R. Wilkenson, H.-Y Wu, B. Yanny, A. Zenteno, Y. Zhang
The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 4” (Y4) and “Year 5” (Y5), the survey strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of these two-season's data, a summary of the overall status, and plans for the final survey season.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.