KEYWORDS: Particle filters, Filtering (signal processing), Particles, Sensors, Monte Carlo methods, Electronic filtering, Detection and tracking algorithms, Defense and security, Optical sensors, Adaptive control
Bearings-only tracking is widely used in the defense arena. Its value can be exploited in systems using optical sensors and sonar, among others. Non-linearity and non-Gaussian prior statistics are among the complications of bearings-only tracking. Several filters have been used to overcome these obstacles, including particle filters and multiple hypothesis extended Kalman filters (MHEKF). Particle filters can accommodate a wide range of distributions and do not need to be linearized. Because of this they seem ideally suited for this problem. A MHEKF can only approximate the prior distribution of a bearings-only tracking scenario and needs to be linearized. However, the likelihood distribution maintained for each MHEKF hypothesis demonstrates significant memory and lends stability to the algorithm, potentially enhancing tracking convergence. Also, the MHEKF is insensitive to outliers. For the scenarios under investigation, the sensor platform is tracking a moving and a stationary target. The sensor is allowed to maneuver in an attempt to maximize tracking performance. For these scenarios, we compare and contrast the acquisition time and mean-squared tracking error performance characteristics of particle filters and MHEKF via Monte Carlo simulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.