Chromoendoscopy (CH) is a gastroenterology imaging modality that involves the staining of tissues with methylene blue, which reacts with the internal walls of the gastrointestinal tract, improving the visual contrast in mucosal surfaces and thus enhancing a doctor’s ability to screen precancerous lesions or early cancer. This technique helps identify areas that can be targeted for biopsy or treatment and in this work we will focus on gastric cancer detection. Gastric chromoendoscopy for cancer detection has several taxonomies available, one of which classifies CH images into three classes (normal, metaplasia, dysplasia) based on color, shape and regularity of pit patterns. Computer-assisted diagnosis is desirable to help us improve the reliability of the tissue classification and abnormalities detection. However, traditional computer vision methodologies, mainly segmentation, do not translate well to the specific visual characteristics of a gastroenterology imaging scenario. We propose the exploitation of a first unsupervised segmentation via superpixel, which groups pixels into perceptually meaningful atomic regions, used to replace the rigid structure of the pixel grid. For each superpixel, a set of features is extracted and then fed to a random forest based classifier, which computes a model used to predict the class of each superpixel. The average general accuracy of our model is 92.05% in the pixel domain (86.62% in the superpixel domain), while detection accuracies on the normal and abnormal class are respectively 85.71% and 95%. Eventually, the whole image class can be predicted image through a majority vote on each superpixel's predicted class.
Barrett's esophagus (BE) is a precancerous complication of gastroesophageal reflux disease in which normal stratified squamous epithelium lining the esophagus is replaced by intestinal metaplastic columnar epithelium. Repeated endoscopies and multiple biopsies are often necessary to establish the presence of intestinal metaplasia. Narrow Band Imaging (NBI) is an imaging technique commonly used with endoscopies that enhances the contrast of vascular pattern on the mucosa. We present a computer-based method for the automatic normal/metaplastic classification of endoscopic NBI images. Superpixel segmentation is used to identify and cluster pixels belonging to uniform regions. From each uniform clustered region of pixels, eight features maximizing differences among normal and metaplastic epithelium are extracted for the classification step. For each superpixel, the three mean intensities of each color channel are firstly selected as features. Three added features are the mean intensities for each superpixel after separately applying to the red-channel image three different morphological filters (top-hat filtering, entropy filtering and range filtering). The last two features require the computation of the Grey-Level Co-Occurrence Matrix (GLCM), and are reflective of the contrast and the homogeneity of each superpixel. The classification step is performed using an ensemble of 50 classification trees, with a 10-fold cross-validation scheme by training the classifier at each step on a random 70% of the images and testing on the remaining 30% of the dataset. Sensitivity and Specificity are respectively of 79.2% and 87.3%, with an overall accuracy of 83.9%.
Celiac disease (CD) is an immune-mediated enteropathy triggered by exposure to gluten and similar proteins, affecting genetically susceptible persons, increasing their risk of different complications. Small bowels mucosa damage due to CD involves various degrees of endoscopically relevant lesions, which are not easily recognized: their overall sensitivity and positive predictive values are poor even when zoom-endoscopy is used. Confocal Laser Endomicroscopy (CLE) allows skilled and trained experts to qualitative evaluate mucosa alteration such as a decrease in goblet cells density, presence of villous atrophy or crypt hypertrophy. We present a method for automatically classifying CLE images into three different classes: normal regions, villous atrophy and crypt hypertrophy. This classification is performed after a features selection process, in which four features are extracted from each image, through the application of homomorphic filtering and border identification through Canny and Sobel operators. Three different classifiers have been tested on a dataset of 67 different images labeled by experts in three classes (normal, VA and CH): linear approach, Naive-Bayes quadratic approach and a standard quadratic analysis, all validated with a ten-fold cross validation. Linear classification achieves 82.09% accuracy (class accuracies: 90.32% for normal villi, 82.35% for VA and 68.42% for CH, sensitivity: 0.68, specificity 1.00), Naive Bayes analysis returns 83.58% accuracy (90.32% for normal villi, 70.59% for VA and 84.21% for CH, sensitivity: 0.84 specificity: 0.92), while the quadratic analysis achieves a final accuracy of 94.03% (96.77% accuracy for normal villi, 94.12% for VA and 89.47% for CH, sensitivity: 0.89, specificity: 0.98).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.