The beam quality of ridge-waveguide quantum cascade laser arrays with broad-area emitters and Multi-Mode Interference (MMI) couplers is investigated both experimentally and numerically. Previous demonstrations of MMI QCL arrays had narrow ridge waveguides to ensure fundamental mode operation and phase locking between elements of the array. In the interest of scaling optical power with lateral waveguide dimensions, we demonstrate broad area tree-arrays with MMI couplers at a wavelength of 4.65μm and ridge widths between 13 μm and 17μm. The emitted beams from the stem’s side are characterized with M2 measurements. We show that the MMI coupled arrays generally have significantly improved beam quality compared to Fabry Perot resonators with the same dimensions. Optimized tree-array devices will be the cornerstone of the next generation high power infrared systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.