We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.
We analyze and demonstrate, numerically and experimentally, the self-healing effect in scaled propagation invariant beams, subject to opaque obstructions. The effect is quantitatively evaluated employing the Root Mean Square deviation and the similarity function.
The design of diffractive optical elements (DOEs) to generate a desired light intensity distribution has been
studied in the realm of diffractive optics. Within the proposed algorithms to perform the design and optimization
of DOEs are the iterative Fourier transform algorithms (IFTAs). In this work we are interested in generating a
spot array using an IFTA. We propose a modified error-reduction IFTA which allows us to reach a target error
with high effciency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.