In many machine vision applications, objects or scenes are imaged in color (red, green and blue) but then transformed into grayscale images before processing. One can use equal weights for the contribution of the color components to gary scale image or can use the unequal weights provided by the luminance mapping of the National Television Standards Committee (NTSC) standard. NTSC weights, which basically enhance the visual properties of the images, may not perform well for classification purposes. In this study, we propose an adaptive color-to-grayscale conversion approach which increases the accuracy of the image classification problems. The method optimizes the contribution of the color components which increases the between-class distances of the images in opponent classes. It’s observed from the experimental results that the proposed method increases the distances of the images in classes between 1% and 87% depending on the dataset which results increases in classification accuracies between 1% and 4% on benchmark classifiers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.